R44NS122604
Project Grant
Overview
Grant Description
Flow Acceleration for Stroke Thrombolysis (FAST) System - Acute Ischemic Stroke (AIS) results from a blood clot in the neurovasculature and is the 5th leading cause of death and 1st leading cause of neurological disability in the United States (US). AIS impacts more than 700,000 Americans annually, with a 65% chance of death or severe disability. By 2030, it is expected that the AIS economic burden will exceed $180B in the US alone.
Standard of care AIS therapies include the use of the FDA approved thrombolytic agent alteplase (i.e., tissue plasminogen activator) within 4.5 hours of stroke onset and earliest-possible thrombectomy for large vessel occlusions (out to 24hrs). In contrast to thrombectomy, thrombolysis does not require confirmation of a vessel occlusion. Because only ~10% of AIS victims are eligible for thrombectomy, thrombolysis remains a critical first-line tool to treat those diagnosed with AIS. When employed, thrombolysis is associated with a ~15% improvement in stroke outcomes with ~10% fully recovering. However, due to the ~7% dose-dependent associated hemorrhage rate of alteplase, thrombolysis is contraindicated for mild and wake-up strokes which together make up ~60% of all AIS events.
Due to safety concerns and limited reliability, usage of thrombolysis in the US remains low (~10%) with 90% of all AIS victims receiving only palliative care. There remains an urgent need to improve first-line use of thrombolysis which can be expanded to all AIS victims. UNANDUP has invented a novel thrombolysis platform to safely accelerate alteplase to the obstructing blood clot, thereby overcoming the restrictive hemodynamics known to prevent alteplase from quickly reaching the occlusion. The proposed magnetic infusion platform overcomes this barrier by 1) adjunctively conveying alteplase to the clot's surface more than 100x faster than normal biological diffusion (i.e., minutes vs. hours), and 2) mechanically mixing alteplase at the clot's surface so that lysis is more reliable. Because alteplase is not conjugated and the mode of action is purely mechanical in nature, FDA meetings confirmed a CDRH IDE pathway is appropriate in support of an FDA early feasibility study, which is a shorter and less expensive pathway compared to a CDER IND process.
Importantly, the technology is affordable, does not require precise focusing, and can be configured to travel with patients transferred between hospitals for thrombectomy. Once proven safe and effective using current FDA approved alteplase labeling, UNANDUP intends to expand thrombolysis to mild and wake-up strokes by increasing the lysis efficacy of smaller alteplase doses known not to induce hemorrhage. If successful, thrombolysis could be safely extended to all 700,000 AIS victims for the first time, which is 10x more than currently treated.
The project's aims include 1) building the magnetic infusion subcomponents (magnetic workstation, silica-coated iron nanoparticles, nanoparticle delivery system), and conducting 2) mechanism of action, 3) in vivo safety, and 4) clot interaction studies. Data obtained for the proposed effort will be critical to address FDA concerns in advance of an FDA early feasibility study IDE.
Standard of care AIS therapies include the use of the FDA approved thrombolytic agent alteplase (i.e., tissue plasminogen activator) within 4.5 hours of stroke onset and earliest-possible thrombectomy for large vessel occlusions (out to 24hrs). In contrast to thrombectomy, thrombolysis does not require confirmation of a vessel occlusion. Because only ~10% of AIS victims are eligible for thrombectomy, thrombolysis remains a critical first-line tool to treat those diagnosed with AIS. When employed, thrombolysis is associated with a ~15% improvement in stroke outcomes with ~10% fully recovering. However, due to the ~7% dose-dependent associated hemorrhage rate of alteplase, thrombolysis is contraindicated for mild and wake-up strokes which together make up ~60% of all AIS events.
Due to safety concerns and limited reliability, usage of thrombolysis in the US remains low (~10%) with 90% of all AIS victims receiving only palliative care. There remains an urgent need to improve first-line use of thrombolysis which can be expanded to all AIS victims. UNANDUP has invented a novel thrombolysis platform to safely accelerate alteplase to the obstructing blood clot, thereby overcoming the restrictive hemodynamics known to prevent alteplase from quickly reaching the occlusion. The proposed magnetic infusion platform overcomes this barrier by 1) adjunctively conveying alteplase to the clot's surface more than 100x faster than normal biological diffusion (i.e., minutes vs. hours), and 2) mechanically mixing alteplase at the clot's surface so that lysis is more reliable. Because alteplase is not conjugated and the mode of action is purely mechanical in nature, FDA meetings confirmed a CDRH IDE pathway is appropriate in support of an FDA early feasibility study, which is a shorter and less expensive pathway compared to a CDER IND process.
Importantly, the technology is affordable, does not require precise focusing, and can be configured to travel with patients transferred between hospitals for thrombectomy. Once proven safe and effective using current FDA approved alteplase labeling, UNANDUP intends to expand thrombolysis to mild and wake-up strokes by increasing the lysis efficacy of smaller alteplase doses known not to induce hemorrhage. If successful, thrombolysis could be safely extended to all 700,000 AIS victims for the first time, which is 10x more than currently treated.
The project's aims include 1) building the magnetic infusion subcomponents (magnetic workstation, silica-coated iron nanoparticles, nanoparticle delivery system), and conducting 2) mechanism of action, 3) in vivo safety, and 4) clot interaction studies. Data obtained for the proposed effort will be critical to address FDA concerns in advance of an FDA early feasibility study IDE.
Awardee
Funding Goals
(1) TO SUPPORT EXTRAMURAL RESEARCH FUNDED BY THE NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE (NINDS) INCLUDING: BASIC RESEARCH THAT EXPLORES THE FUNDAMENTAL STRUCTURE AND FUNCTION OF THE BRAIN AND THE NERVOUS SYSTEM, RESEARCH TO UNDERSTAND THE CAUSES AND ORIGINS OF PATHOLOGICAL CONDITIONS OF THE NERVOUS SYSTEM WITH THE GOAL OF PREVENTING THESE DISORDERS, RESEARCH ON THE NATURAL COURSE OF NEUROLOGICAL DISORDERS, IMPROVED METHODS OF DISEASE PREVENTION, NEW METHODS OF DIAGNOSIS AND TREATMENT, DRUG DEVELOPMENT, DEVELOPMENT OF NEURAL DEVICES, CLINICAL TRIALS, AND RESEARCH TRAINING IN BASIC, TRANSLATIONAL AND CLINICAL NEUROSCIENCE. THE INSTITUTE IS THE LARGEST FUNDER OF BASIC NEUROSCIENCE IN THE US AND SUPPORTS RESEARCH ON TOPICS INCLUDING BUT NOT LIMITED TO: DEVELOPMENT OF THE NERVOUS SYSTEM, INCLUDING NEUROGENESIS AND PROGENITOR CELL BIOLOGY, SIGNAL TRANSDUCTION IN DEVELOPMENT AND PLASTICITY, AND PROGRAMMED CELL DEATH, SYNAPSE FORMATION, FUNCTION, AND PLASTICITY, LEARNING AND MEMORY, CHANNELS, TRANSPORTERS, AND PUMPS, CIRCUIT FORMATION AND MODULATION, BEHAVIORAL AND COGNITIVE NEUROSCIENCE, SENSORIMOTOR LEARNING, INTEGRATION AND EXECUTIVE FUNCTION, NEUROENDOCRINE SYSTEMS, SLEEP AND CIRCADIAN RHYTHMS, AND SENSORY AND MOTOR SYSTEMS. IN ADDITION, THE INSTITUTE SUPPORTS BASIC, TRANSLATIONAL AND CLINICAL STUDIES ON A NUMBER OF DISORDERS OF THE NERVOUS SYSTEM INCLUDING (BUT NOT LIMITED TO): STROKE, TRAUMATIC INJURY TO THE BRAIN, SPINAL CORD AND PERIPHERAL NERVOUS SYSTEM, NEURODEGENERATIVE DISORDERS, MOVEMENT DISORDERS, BRAIN TUMORS, CONVULSIVE DISORDERS, INFECTIOUS DISORDERS OF THE BRAIN AND NERVOUS SYSTEM, IMMUNE DISORDERS OF THE BRAIN AND NERVOUS SYSTEM, INCLUDING MULTIPLE SCLEROSIS, DISORDERS RELATED TO SLEEP, AND PAIN. PROGRAMMATIC AREAS, WHICH ARE PRIMARILY SUPPORTED BY THE DIVISION OF NEUROSCIENCE, ARE ALSO SUPPORTED BY THE DIVISION OF EXTRAMURAL ACTIVITIES, THE DIVISION OF TRANSLATIONAL RESEARCH, THE DIVISION OF CLINICAL RESEARCH, THE OFFICE OF TRAINING AND WORKFORCE DEVELOPMENT, THE OFFICE OF PROGRAMS TO ENHANCE NEUROSCIENCE WORKFORCE DEVELOPMENT, AND THE OFFICE OF INTERNATIONAL ACTIVITIES. (2) TO EXPAND AND IMPROVE THE SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM, TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, TO INCREASE SMALL BUSINESS PARTICIPATION IN FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION. TO UTILIZE THE SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAM, TO STIMULATE AND FOSTER SCIENTIFIC AND TECHNOLOGICAL INNOVATION THROUGH COOPERATIVE RESEARCH AND DEVELOPMENT CARRIED OUT BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO FOSTER TECHNOLOGY TRANSFER BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION.
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Missouri
United States
Geographic Scope
State-Wide
Related Opportunity
Analysis Notes
Amendment Since initial award the End Date has been extended from 06/30/23 to 07/31/24 and the total obligations have increased 114% from $1,211,807 to $2,595,730.
Unandup was awarded
Project Grant R44NS122604
worth $2,595,730
from the National Institute of Neurological Disorders and Stroke in July 2021 with work to be completed primarily in Missouri United States.
The grant
has a duration of 3 years and
was awarded through assistance program 93.853 Extramural Research Programs in the Neurosciences and Neurological Disorders.
The Project Grant was awarded through grant opportunity PHS 2020-2 Omnibus Solicitation of the NIH, CDC and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed).
SBIR Details
Research Type
SBIR Phase II
Title
Flow Acceleration for Stroke Thrombolysis (FAST) System
Abstract
Acute ischemic stroke (AIS) results from a blood clot in the neurovasculature and is the 5th leading cause of death and 1st leading cause of neurological disability in the United States (US). AIS impacts more than 700,000 Americans annually, with a 65% chance of death or severe disability. By 2030, it is expected that the AIS economic burden will exceed $180B in the US alone.Standard of care AIS therapies include the use of the FDA approved thrombolytic agent alteplase (i.e., tissue plasminogen activator) within 4.5 hours of stroke onset and earliest-possible thrombectomy for large vessel occlusions (out to 24hrs). In contrast to thrombectomy, thrombolysis does not require confirmation of a vessel occlusion. Because only ~10% of AIS victims are eligible for thrombectomy, thrombolysis remains a critical first line tool to treat those diagnosed with AIS. When employed, thrombolysis is associated with a ~15% improvement in stroke outcomes with ~10% fully recovering. However, due to the ~7% dose-dependent associated hemorrhage rate of alteplase, thrombolysis is contraindicated for mild and wake-up strokes which together make up ~60% of all AIS events. Due to safety concerns and limited reliability, usage of thrombolysis in the US remains low (~10%) with 90% of all AIS victims receiving only palliative care. There remains an urgent need to improve first line use of thrombolysis which can be expanded to all AIS victims. UNandUP has invented a novel thrombolysis platform to safely accelerate alteplase to the obstructing blood clot, thereby overcoming the restrictive hemodynamics known to prevent alteplase from quickly reaching the occlusion. The proposed magnetic infusion platform overcomes this barrier by 1) adjunctively conveying alteplase to the clot’s surface more than 100X faster than normal biological diffusion (i.e., minutes vs. hours), and 2) mechanically mixing alteplase at the clot’s surface so that lysis is more reliable. Because alteplase is not conjugated and the mode of action is purely mechanical in nature, FDA meetings confirmed a CDRH IDE pathway is appropriate in support of an FDA Early Feasibility Study, which is a shorter and less expensive pathway compared to a CDER IND process. Importantly, the technology is affordable, does not require precise focusing, and can be configured to travel with patients transferred between hospitals for thrombectomy. Once proven safe and effective using current FDA approved alteplase labeling, UNandUP intends to expand thrombolysis to mild and wake up strokes by increasing the lysis efficacy of smaller alteplase doses known not to induce hemorrhage. If successful, thrombolysis could be safely extended to all 700,000 AIS victims for the first time, which is 10X more than currently treated. The project’s aims include 1) building the magnetic infusion subcomponents (magnetic workstation, silica coated iron nanoparticles, nanoparticle delivery system), and conducting 2) mechanism of action, 3) in vivo safety, and 4) clot interaction studies. Data obtained for the proposed effort will be critical to address FDA concerns in advance of an FDA Early Feasibility Study IDE.There are more than 700,000 annual acute ischemic stroke (AIS) events in the US which result in more than 150,000 deaths, making AIS the fifth leading cause of death and the leading cause of neurological disability. Although thrombectomy is the standard of care for those diagnosed with a treatable large vessel occlusion in the anterior circulation, a majority of AIS events are not amenable to thrombectomy; thus, improvements in thrombolysis are needed in that 1) thrombolysis currently results in only a ~10% chance of full recovery; 2) due to dose-related hemorrhage risks of thrombolysis, mild and wake-up strokes remain contraindicated for thrombolysis despite making up nearly 60% of all strokes; and 3) AIS patients who are thrombolyzed during transfer often arrive too late to benefit from thrombectomy. UNandUP (short for “Unmet Needs and Underserved Populations”) has invented a novel thrombolysis platform which promises to be more effective (by adjunctively lysing occlusive clots faster and more reliably) and safer (by subsequently lowering the systemic thrombolytic dose associated with hemorrhage), so that all AIS victims can be better treated.
Topic Code
NINDS
Solicitation Number
PA20-260
Status
(Complete)
Last Modified 12/17/24
Period of Performance
7/15/21
Start Date
7/31/24
End Date
Funding Split
$2.6M
Federal Obligation
$0.0
Non-Federal Obligation
$2.6M
Total Obligated
Activity Timeline
Transaction History
Modifications to R44NS122604
Additional Detail
Award ID FAIN
R44NS122604
SAI Number
R44NS122604-3254837985
Award ID URI
SAI UNAVAILABLE
Awardee Classifications
Small Business
Awarding Office
75NQ00 NIH NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE
Funding Office
75NQ00 NIH NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE
Awardee UEI
KS8GMBKHNKV3
Awardee CAGE
80L26
Performance District
MO-90
Senators
Joshua Hawley
Eric Schmitt
Eric Schmitt
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Health and Human Services (075-0886) | Health research and training | Grants, subsidies, and contributions (41.0) | $1,383,923 | 100% |
Modified: 12/17/24