Search Prime Grants

R43HL165987

Project Grant

Overview

Grant Description
A wearable magnetocardiography imaging system - project summary. Recent studies have shown radiation therapy (RT) ablation to be a highly promising alternative therapy for patients with drug-refractory VT who are unable to undergo catheter-based ablation. Ideally, RT ablation is performed in conjunction with noninvasive electrophysiology (EP) imaging, such as ECG imaging (ECGI), so that the entire procedure is noninvasive. However, currently noninvasive EP imaging is much less accurate than RT and needs to be significantly improved to realize the full potential of RT ablation.

In this project, we propose to utilize magnetocardiography (MCG) to develop an MCG imaging (MCGI) system. In comparison to ECG, MCG provides fundamental advantages for source localization and imaging due to the favorable transmission properties of magnetic signals. From a practical standpoint, MCG is more convenient because it is a contactless technique, whereas ECGI requires application of a large array of electrodes.

The proposed system will be based on a revolutionary type of magnetic sensor, known as an optically-pumped magnetometer (OPM), which was first brought to market by our company. OPMs are far more practical than SQUID magnetometers because they are smaller, less expensive, and operate at room temperature. This will enable construction of an MCGI system with a conformal sensor array that covers the entire torso.

The overall goal is to construct an MCGI system with improved accuracy and ease-of-use, compared to current ECGI/MCGI systems. The Phase I aims are to: 1) determine an optimal sensor configuration for the MCGI system based on analysis of the spatial properties of the signal, 2) design a compact magnetic shield that is patient-friendly and minimizes the space requirements of the system, 3) devise a strategy for rapid, accurate digitization of the sensor locations, and 4) demonstrate the feasibility of key aspects of the proposed techniques in a small study of normal subjects.
Awardee
Funding Goals
TO FOSTER HEART AND VASCULAR RESEARCH IN THE BASIC, TRANSLATIONAL, CLINICAL AND POPULATION SCIENCES, AND TO FOSTER TRAINING TO BUILD TALENTED YOUNG INVESTIGATORS IN THESE AREAS, FUNDED THROUGH COMPETITIVE RESEARCH TRAINING GRANTS. SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM: TO STIMULATE TECHNOLOGICAL INNOVATION, USE SMALL BUSINESS TO MEET FEDERAL RESEARCH AND DEVELOPMENT NEEDS, FOSTER AND ENCOURAGE PARTICIPATION IN INNOVATION AND ENTREPRENEURSHIP BY SOCIALLY AND ECONOMICALLY DISADVANTAGED PERSONS, AND INCREASE PRIVATE-SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT FUNDING. SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAM: TO STIMULATE TECHNOLOGICAL INNOVATION, FOSTER TECHNOLOGY TRANSFER THROUGH COOPERATIVE R&D BETWEEN SMALL BUSINESSES AND RESEARCH INSTITUTIONS, AND INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL R&D.
Place of Performance
Colorado United States
Geographic Scope
State-Wide
Analysis Notes
Amendment Since initial award the End Date has been extended from 08/31/23 to 08/31/24.
Quspin was awarded Project Grant R43HL165987 worth $497,890 from National Heart Lung and Blood Institute in September 2022 with work to be completed primarily in Colorado United States. The grant has a duration of 2 years and was awarded through assistance program 93.837 Cardiovascular Diseases Research. The Project Grant was awarded through grant opportunity PHS 2021-2 Omnibus Solicitation of the NIH, CDC and FDA for Small Business Innovation Research Grant Applications (Parent SBIR [R43/R44] Clinical Trial Not Allowed).

SBIR Details

Research Type
SBIR Phase I
Title
A Wearable Magnetocardiography Imaging System
Abstract
PROJECT SUMMARY Recent studies have shown radiation therapy (RT) ablation to be a highly promising alternative therapy for patients with drug-refractory VT who are unable to undergo catheter-based ablation. Ideally, RT ablation is performed in conjunction with noninvasive electrophysiology (EP) imaging, such as ECG imaging (ECGI), so that the entire procedure is noninvasive; however, currently noninvasive EP imaging is much less accurate than RT and needs to be significantly improved to realize the full potential of RT ablation. In this project, we propose to utilize magnetocardiography (MCG) to develop an MCG imaging (MCGI) system. In comparison to ECG, MCG provides fundamental advantages for source localization and imaging due to the favorable transmission properties of magnetic signals. From a practical standpoint, MCG is more convenient because it is a contactless technique, whereas ECGI requires application of a large array of electrodes. The proposed system will be based on a revolutionary type of magnetic sensor, known as an optically-pumped magnetometer (OPM), which was first brought to market by our company. OPMs are far more practical than SQUID magnetometers because they are smaller, less expensive, and operate at room temperature. This will enable construction of an MCGI system with a conformal sensor array that covers the entire torso. The overall goal is to construct an MCGI system with improved accuracy and ease-of-use, compared to current ECGI/MCGI systems. The Phase I aims are to 1) determine an optimal sensor configuration for the MCGI system based on analysis of the spatial properties of the signal, 2) design a compact magnetic shield that is patient-friendly and minimizes the space requirements of the system, 3) devise a strategy for rapid, accurate digitization of the sensor locations, and 4) demonstrate the feasibility of key aspects of the proposed techniques in a small study of normal subjects.
Topic Code
NHLBI
Solicitation Number
PA21-259

Status
(Complete)

Last Modified 2/20/25

Period of Performance
9/1/22
Start Date
8/31/24
End Date
100% Complete

Funding Split
$497.9K
Federal Obligation
$0.0
Non-Federal Obligation
$497.9K
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to R43HL165987

Transaction History

Modifications to R43HL165987

Additional Detail

Award ID FAIN
R43HL165987
SAI Number
R43HL165987-2066731576
Award ID URI
SAI UNAVAILABLE
Awardee Classifications
Small Business
Awarding Office
75NH00 NIH NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
Funding Office
75NH00 NIH NATIONAL HEART, LUNG, AND BLOOD INSTITUTE
Awardee UEI
F99NA5GZHCH7
Awardee CAGE
674K0
Performance District
CO-90
Senators
Michael Bennet
John Hickenlooper

Budget Funding

Federal Account Budget Subfunction Object Class Total Percentage
National Heart, Lung, and Blood Institute, National Institutes of Health, Health and Human Services (075-0872) Health research and training Grants, subsidies, and contributions (41.0) $497,890 100%
Modified: 2/20/25