R35CA253126
Project Grant
Overview
Grant Description
Towards a Quantitative Understanding of Tumor Evolution - Abstract
Cancers are dynamic biological entities whose clonal architecture can change under strong selection pressures, such as exposure to therapy. As tumors progress through different stages, they coevolve with stromal populations, which in aggregate constitutes a significant challenge in assessing the potential value of new therapeutic strategies.
Recent discoveries by us and other groups have provided a glimpse of the complexity of the clonal architecture of many tumors, their dynamics under therapy, and their interactions with the immune system. In most tumors, several sub-clonal populations simultaneously co-exist, and initially minor clones play a dominant role in subsequent phases of the tumor's evolution.
As clonal and stromal heterogeneity emerge as driving forces underlying cancer progression and therapeutic failure, there is a critical need for uncovering the quantitative fundamental principles underlying the evolution of tumors and their dynamic interaction with their microenvironment.
My recent work has shown that tumor evolution does not proceed in a stochastic fashion but through a highly structured process, and that future dominant subclones can both be identified and targeted. The quantitative approaches developed by my group in the last few years are particularly tailored to elucidate the evolutionary patterns of clonal systems under strong selection.
The central hypothesis of this proposal is that (1) tumor and stroma coevolve in an orchestrated fashion, (2) seeding clones can be identified through genomic and single cell longitudinal sampling, (3) these clones can be targeted, and (4) in order to characterize these clones we need to develop new quantitative approaches.
The overarching goal of the present proposal is to uncover the mechanisms by which small tumor and stromal populations coevolve and drive tumor progression and the emergence of drug resistance, using glioblastoma as a paradigm. Quantitative approaches and fundamental principles of tumor evolution derived from this research will then be applied to other tumor types.
Cancers are dynamic biological entities whose clonal architecture can change under strong selection pressures, such as exposure to therapy. As tumors progress through different stages, they coevolve with stromal populations, which in aggregate constitutes a significant challenge in assessing the potential value of new therapeutic strategies.
Recent discoveries by us and other groups have provided a glimpse of the complexity of the clonal architecture of many tumors, their dynamics under therapy, and their interactions with the immune system. In most tumors, several sub-clonal populations simultaneously co-exist, and initially minor clones play a dominant role in subsequent phases of the tumor's evolution.
As clonal and stromal heterogeneity emerge as driving forces underlying cancer progression and therapeutic failure, there is a critical need for uncovering the quantitative fundamental principles underlying the evolution of tumors and their dynamic interaction with their microenvironment.
My recent work has shown that tumor evolution does not proceed in a stochastic fashion but through a highly structured process, and that future dominant subclones can both be identified and targeted. The quantitative approaches developed by my group in the last few years are particularly tailored to elucidate the evolutionary patterns of clonal systems under strong selection.
The central hypothesis of this proposal is that (1) tumor and stroma coevolve in an orchestrated fashion, (2) seeding clones can be identified through genomic and single cell longitudinal sampling, (3) these clones can be targeted, and (4) in order to characterize these clones we need to develop new quantitative approaches.
The overarching goal of the present proposal is to uncover the mechanisms by which small tumor and stromal populations coevolve and drive tumor progression and the emergence of drug resistance, using glioblastoma as a paradigm. Quantitative approaches and fundamental principles of tumor evolution derived from this research will then be applied to other tumor types.
Funding Goals
TO PROVIDE FUNDAMENTAL INFORMATION ON THE CAUSE AND NATURE OF CANCER IN PEOPLE, WITH THE EXPECTATION THAT THIS WILL RESULT IN BETTER METHODS OF PREVENTION, DETECTION AND DIAGNOSIS, AND TREATMENT OF NEOPLASTIC DISEASES. CANCER BIOLOGY RESEARCH INCLUDES THE FOLLOWING RESEARCH PROGRAMS: CANCER CELL BIOLOGY, CANCER IMMUNOLOGY, HEMATOLOGY AND ETIOLOGY, DNA AND CHROMOSOMAL ABERRATIONS, TUMOR BIOLOGY AND METASTASIS, AND STRUCTURAL BIOLOGY AND MOLECULAR APPLICATIONS.
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
New York,
New York
100324208
United States
Geographic Scope
Single Zip Code
Related Opportunity
Analysis Notes
Amendment Since initial award the total obligations have increased 372% from $972,000 to $4,585,388.
The Trustees Of Columbia University In The City Of New York was awarded
Quantitative Tumor Evolution Dynamics Improved Therapeutic Strategies
Project Grant R35CA253126
worth $4,585,388
from National Cancer Institute in August 2021 with work to be completed primarily in New York New York United States.
The grant
has a duration of 7 years and
was awarded through assistance program 93.396 Cancer Biology Research.
The Project Grant was awarded through grant opportunity NCI Outstanding Investigator Award (R35 Clinical Trial Not Allowed).
Status
(Ongoing)
Last Modified 8/20/25
Period of Performance
8/1/21
Start Date
7/31/28
End Date
Funding Split
$4.6M
Federal Obligation
$0.0
Non-Federal Obligation
$4.6M
Total Obligated
Activity Timeline
Transaction History
Modifications to R35CA253126
Additional Detail
Award ID FAIN
R35CA253126
SAI Number
R35CA253126-4219929797
Award ID URI
SAI UNAVAILABLE
Awardee Classifications
Private Institution Of Higher Education
Awarding Office
75NC00 NIH National Cancer Institute
Funding Office
75NC00 NIH National Cancer Institute
Awardee UEI
QHF5ZZ114M72
Awardee CAGE
3FHD3
Performance District
NY-13
Senators
Kirsten Gillibrand
Charles Schumer
Charles Schumer
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
National Cancer Institute, National Institutes of Health, Health and Human Services (075-0849) | Health research and training | Grants, subsidies, and contributions (41.0) | $1,717,988 | 100% |
Modified: 8/20/25