Search Prime Grants

R01NS124224

Project Grant

Overview

Grant Description
Spinal Cord Associative Plasticity - Summary

Experience leads to behavioral change through associative activity of neural circuits. Using this principle, paired stimulation has been used to selectively strengthen circuits. We propose to target the spinal cord for associative plasticity, exploiting the strong interaction of descending motor connections and large diameter afferents, which mediate the senses of joint position and muscle tension.

In rats and humans, sub-threshold cervical stimulation, which activates afferents, strongly augments motor cortex evoked muscle responses when timed to converge in the spinal cord. When pairing is performed repeatedly in rats, Spinal Cord Associative Plasticity (SCAP) is induced with a large and sustained increase in excitability. In rats with cervical spinal cord injury (SCI), 10 days of SCAP significantly improved forelimb function. We hypothesize that SCAP will strengthen spinal excitability, modulate reflexes, and increase pinch force in people with cervical SCI.

Aim 1 tests the timing of pairing and the circuits mediating paired stimulation, key issues for proper targeting. Timing cortical and spinal stimulation to converge in the spinal cord, as opposed to cortex, is predicted to be strongest. We will use both non-invasive and invasive spinal cord stimulation. For non-invasive stimulation, we will combine transcutaneous stimulation over the neck with transcranial magnetic stimulation over the cortex. For invasive stimulation, we will combine spinal epidural stimulation with transcranial electrical stimulation during clinically indicated surgery.

Aim 2 tests the effects of SCAP to produce a lasting increase in spinal excitability, as measured by both cortical and spinal evoked potentials and pinch dynamometry. Controls will isolate the changes induced specifically through pairing.

Finally, Aim 3 tests whether paired motor cortex and cervical spinal cord stimulation produces similar effects in people with the two most common causes of SCI, cervical myelopathy and traumatic SCI, as uninjured participants. Spinal excitability is predicted to increase, pinch force is expected to become stronger, and spinal reflexes are expected to diminish. The integrity of spinal pathways will be measured with both physiology and analysis of cervical MRI.

Together, these studies will fill critical gaps about the nature of associative plasticity in the sensorimotor system and test a new strategy to strengthen residual connections after SCI. This strategy will be tested with both invasive and non-invasive stimulation, allowing direct comparison of these approaches for the first time. Thus, we intend to close gaps in our understanding of how paired stimulation of sensorimotor circuits should be targeted to the spinal cord and which residual circuits support the plasticity. This knowledge can optimize how we target electrical stimulation to induce SCAP. Multiple methods of motor cortex and cervical spinal cord stimulation have been proven to be safe, so these mechanistic studies can be translated quickly to efficacy trials.
Funding Goals
(1) TO SUPPORT EXTRAMURAL RESEARCH FUNDED BY THE NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE (NINDS) INCLUDING: BASIC RESEARCH THAT EXPLORES THE FUNDAMENTAL STRUCTURE AND FUNCTION OF THE BRAIN AND THE NERVOUS SYSTEM, RESEARCH TO UNDERSTAND THE CAUSES AND ORIGINS OF PATHOLOGICAL CONDITIONS OF THE NERVOUS SYSTEM WITH THE GOAL OF PREVENTING THESE DISORDERS, RESEARCH ON THE NATURAL COURSE OF NEUROLOGICAL DISORDERS, IMPROVED METHODS OF DISEASE PREVENTION, NEW METHODS OF DIAGNOSIS AND TREATMENT, DRUG DEVELOPMENT, DEVELOPMENT OF NEURAL DEVICES, CLINICAL TRIALS, AND RESEARCH TRAINING IN BASIC, TRANSLATIONAL AND CLINICAL NEUROSCIENCE. THE INSTITUTE IS THE LARGEST FUNDER OF BASIC NEUROSCIENCE IN THE US AND SUPPORTS RESEARCH ON TOPICS INCLUDING BUT NOT LIMITED TO: DEVELOPMENT OF THE NERVOUS SYSTEM, INCLUDING NEUROGENESIS AND PROGENITOR CELL BIOLOGY, SIGNAL TRANSDUCTION IN DEVELOPMENT AND PLASTICITY, AND PROGRAMMED CELL DEATH, SYNAPSE FORMATION, FUNCTION, AND PLASTICITY, LEARNING AND MEMORY, CHANNELS, TRANSPORTERS, AND PUMPS, CIRCUIT FORMATION AND MODULATION, BEHAVIORAL AND COGNITIVE NEUROSCIENCE, SENSORIMOTOR LEARNING, INTEGRATION AND EXECUTIVE FUNCTION, NEUROENDOCRINE SYSTEMS, SLEEP AND CIRCADIAN RHYTHMS, AND SENSORY AND MOTOR SYSTEMS. IN ADDITION, THE INSTITUTE SUPPORTS BASIC, TRANSLATIONAL AND CLINICAL STUDIES ON A NUMBER OF DISORDERS OF THE NERVOUS SYSTEM INCLUDING (BUT NOT LIMITED TO): STROKE, TRAUMATIC INJURY TO THE BRAIN, SPINAL CORD AND PERIPHERAL NERVOUS SYSTEM, NEURODEGENERATIVE DISORDERS, MOVEMENT DISORDERS, BRAIN TUMORS, CONVULSIVE DISORDERS, INFECTIOUS DISORDERS OF THE BRAIN AND NERVOUS SYSTEM, IMMUNE DISORDERS OF THE BRAIN AND NERVOUS SYSTEM, INCLUDING MULTIPLE SCLEROSIS, DISORDERS RELATED TO SLEEP, AND PAIN. PROGRAMMATIC AREAS, WHICH ARE PRIMARILY SUPPORTED BY THE DIVISION OF NEUROSCIENCE, ARE ALSO SUPPORTED BY THE DIVISION OF EXTRAMURAL ACTIVITIES, THE DIVISION OF TRANSLATIONAL RESEARCH, THE DIVISION OF CLINICAL RESEARCH, THE OFFICE OF TRAINING AND WORKFORCE DEVELOPMENT, THE OFFICE OF PROGRAMS TO ENHANCE NEUROSCIENCE WORKFORCE DEVELOPMENT, AND THE OFFICE OF INTERNATIONAL ACTIVITIES. (2) TO EXPAND AND IMPROVE THE SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM, TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, TO INCREASE SMALL BUSINESS PARTICIPATION IN FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION. TO UTILIZE THE SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAM, TO STIMULATE AND FOSTER SCIENTIFIC AND TECHNOLOGICAL INNOVATION THROUGH COOPERATIVE RESEARCH AND DEVELOPMENT CARRIED OUT BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO FOSTER TECHNOLOGY TRANSFER BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION.
Place of Performance
New York, New York 10032 United States
Geographic Scope
Single Zip Code
Analysis Notes
Amendment Since initial award the total obligations have increased 500% from $550,365 to $3,299,466.
The Trustees Of Columbia University In The City Of New York was awarded Enhancing Spinal Cord Associative Plasticity Improved Function after SCI Project Grant R01NS124224 worth $3,299,466 from the National Institute of Neurological Disorders and Stroke in September 2021 with work to be completed primarily in New York New York United States. The grant has a duration of 4 years 9 months and was awarded through assistance program 93.853 Extramural Research Programs in the Neurosciences and Neurological Disorders. The Project Grant was awarded through grant opportunity Research Project Grant (Parent R01 Clinical Trial Required).

Status
(Ongoing)

Last Modified 7/21/25

Period of Performance
9/10/21
Start Date
6/30/26
End Date
84.0% Complete

Funding Split
$3.3M
Federal Obligation
$0.0
Non-Federal Obligation
$3.3M
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to R01NS124224

Subgrant Awards

Disclosed subgrants for R01NS124224

Transaction History

Modifications to R01NS124224

Additional Detail

Award ID FAIN
R01NS124224
SAI Number
R01NS124224-3632747723
Award ID URI
SAI UNAVAILABLE
Awardee Classifications
Private Institution Of Higher Education
Awarding Office
75NQ00 NIH National Institute of Neurological Disorders and Stroke
Funding Office
75NQ00 NIH National Institute of Neurological Disorders and Stroke
Awardee UEI
QHF5ZZ114M72
Awardee CAGE
3FHD3
Performance District
NY-13
Senators
Kirsten Gillibrand
Charles Schumer

Budget Funding

Federal Account Budget Subfunction Object Class Total Percentage
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Health and Human Services (075-0886) Health research and training Grants, subsidies, and contributions (41.0) $1,285,973 100%
Modified: 7/21/25