Search Prime Grants

R01NS122394

Project Grant

Overview

Grant Description
Structural Basis of Signal Instigation through Family C GPCRs - Abstract

The γ-aminobutyric acid B receptor (GABABR) and the metabotropic glutamate receptors (mGluRs) belong to the Family C of G protein-coupled receptors (GPCRs) and critically regulate neuronal excitability, synaptic transmission, and plasticity. Many disorders of the central nervous system (CNS) have been linked to alterations in neuronal excitability via the glutamatergic and GABAergic systems. Accordingly, mGluRs and GABABR have been the subject of an enormous drug discovery effort as they represent major therapeutic targets for treating numerous physiological dysfunctions and for neurodegenerative and neuropsychiatric conditions.

Apart from the prototypical seven transmembrane helix (7TM) domain, Family C GPCRs also include a large extracellular 'Venus fly trap' (VFT) domain that constitutes the orthosteric ligand binding site. Binding of ligand to the extracellular VFT domain triggers a large conformational change in the VFT domains from an open to a closed conformation. This clamshell-like closure of the extracellular domain results in receptor engagement and activation of G proteins on the intracellular side of the transmembrane domain with a mechanism that remains unclear. Receptor-activated G proteins then act to either enhance or repress secondary messenger signaling cascades.

We recently showed cryo-electron microscopy (cryoEM) structures of near-full-length mGluR5 and GABABR in inactive and active conformations, revealing extensive transitions in the organization of the 7TM dimer upon ligand binding to the VFT. Notwithstanding this progress, several key questions remain regarding the allosteric communication across the cell membrane by Family C GPCRs, and particularly the mechanism of G protein coupling and activation.

To address these questions, we propose to obtain the structures of mGluR2, mGluR5, and GABABR in complex with their cognate G proteins and probe the structural insights using molecular dynamics simulations and mutagenesis coupled to functional assays. The similarities and differences amongst these receptor-G protein complexes will allow us to contrast and compare our findings and examine aspects of G protein coupling and selectivity.

Collectively, these studies will enable us to create a detailed mechanistic framework to understand Family C GPCR signaling and will form the basis for the design of novel therapeutic strategies targeting these receptors.
Funding Goals
(1) TO SUPPORT EXTRAMURAL RESEARCH FUNDED BY THE NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE (NINDS) INCLUDING: BASIC RESEARCH THAT EXPLORES THE FUNDAMENTAL STRUCTURE AND FUNCTION OF THE BRAIN AND THE NERVOUS SYSTEM, RESEARCH TO UNDERSTAND THE CAUSES AND ORIGINS OF PATHOLOGICAL CONDITIONS OF THE NERVOUS SYSTEM WITH THE GOAL OF PREVENTING THESE DISORDERS, RESEARCH ON THE NATURAL COURSE OF NEUROLOGICAL DISORDERS, IMPROVED METHODS OF DISEASE PREVENTION, NEW METHODS OF DIAGNOSIS AND TREATMENT, DRUG DEVELOPMENT, DEVELOPMENT OF NEURAL DEVICES, CLINICAL TRIALS, AND RESEARCH TRAINING IN BASIC, TRANSLATIONAL AND CLINICAL NEUROSCIENCE. THE INSTITUTE IS THE LARGEST FUNDER OF BASIC NEUROSCIENCE IN THE US AND SUPPORTS RESEARCH ON TOPICS INCLUDING BUT NOT LIMITED TO: DEVELOPMENT OF THE NERVOUS SYSTEM, INCLUDING NEUROGENESIS AND PROGENITOR CELL BIOLOGY, SIGNAL TRANSDUCTION IN DEVELOPMENT AND PLASTICITY, AND PROGRAMMED CELL DEATH, SYNAPSE FORMATION, FUNCTION, AND PLASTICITY, LEARNING AND MEMORY, CHANNELS, TRANSPORTERS, AND PUMPS, CIRCUIT FORMATION AND MODULATION, BEHAVIORAL AND COGNITIVE NEUROSCIENCE, SENSORIMOTOR LEARNING, INTEGRATION AND EXECUTIVE FUNCTION, NEUROENDOCRINE SYSTEMS, SLEEP AND CIRCADIAN RHYTHMS, AND SENSORY AND MOTOR SYSTEMS. IN ADDITION, THE INSTITUTE SUPPORTS BASIC, TRANSLATIONAL AND CLINICAL STUDIES ON A NUMBER OF DISORDERS OF THE NERVOUS SYSTEM INCLUDING (BUT NOT LIMITED TO): STROKE, TRAUMATIC INJURY TO THE BRAIN, SPINAL CORD AND PERIPHERAL NERVOUS SYSTEM, NEURODEGENERATIVE DISORDERS, MOVEMENT DISORDERS, BRAIN TUMORS, CONVULSIVE DISORDERS, INFECTIOUS DISORDERS OF THE BRAIN AND NERVOUS SYSTEM, IMMUNE DISORDERS OF THE BRAIN AND NERVOUS SYSTEM, INCLUDING MULTIPLE SCLEROSIS, DISORDERS RELATED TO SLEEP, AND PAIN. PROGRAMMATIC AREAS, WHICH ARE PRIMARILY SUPPORTED BY THE DIVISION OF NEUROSCIENCE, ARE ALSO SUPPORTED BY THE DIVISION OF EXTRAMURAL ACTIVITIES, THE DIVISION OF TRANSLATIONAL RESEARCH, THE DIVISION OF CLINICAL RESEARCH, THE OFFICE OF TRAINING AND WORKFORCE DEVELOPMENT, THE OFFICE OF PROGRAMS TO ENHANCE NEUROSCIENCE WORKFORCE DEVELOPMENT, AND THE OFFICE OF INTERNATIONAL ACTIVITIES. (2) TO EXPAND AND IMPROVE THE SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM, TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, TO INCREASE SMALL BUSINESS PARTICIPATION IN FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION. TO UTILIZE THE SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAM, TO STIMULATE AND FOSTER SCIENTIFIC AND TECHNOLOGICAL INNOVATION THROUGH COOPERATIVE RESEARCH AND DEVELOPMENT CARRIED OUT BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO FOSTER TECHNOLOGY TRANSFER BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION.
Place of Performance
Memphis, Tennessee 38105 United States
Geographic Scope
Single Zip Code
Analysis Notes
Amendment Since initial award the total obligations have increased 425% from $645,521 to $3,391,007.
St. Jude Children's Research Hospital was awarded Structural Insights on Family C GPCRs Signaling Project Grant R01NS122394 worth $3,391,007 from the National Institute of Neurological Disorders and Stroke in March 2021 with work to be completed primarily in Memphis Tennessee United States. The grant has a duration of 5 years and was awarded through assistance program 93.853 Extramural Research Programs in the Neurosciences and Neurological Disorders. The Project Grant was awarded through grant opportunity NIH Research Project Grant (Parent R01 Clinical Trial Not Allowed).

Status
(Ongoing)

Last Modified 8/20/25

Period of Performance
3/15/21
Start Date
2/28/26
End Date
90.0% Complete

Funding Split
$3.4M
Federal Obligation
$0.0
Non-Federal Obligation
$3.4M
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to R01NS122394

Subgrant Awards

Disclosed subgrants for R01NS122394

Transaction History

Modifications to R01NS122394

Additional Detail

Award ID FAIN
R01NS122394
SAI Number
R01NS122394-257192088
Award ID URI
SAI UNAVAILABLE
Awardee Classifications
Nonprofit With 501(c)(3) IRS Status (Other Than An Institution Of Higher Education)
Awarding Office
75NQ00 NIH National Institute of Neurological Disorders and Stroke
Funding Office
75NQ00 NIH National Institute of Neurological Disorders and Stroke
Awardee UEI
JL4JHE9SDRR3
Awardee CAGE
0L0C5
Performance District
TN-09
Senators
Marsha Blackburn
Bill Hagerty

Budget Funding

Federal Account Budget Subfunction Object Class Total Percentage
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Health and Human Services (075-0886) Health research and training Grants, subsidies, and contributions (41.0) $1,408,574 100%
Modified: 8/20/25