Search Prime Grants

R01NS121174

Project Grant

Overview

Grant Description
Determinants of Basal Ganglia Pathology in Parkinson's Disease - Summary

The motor symptoms of Parkinson's disease (PD) result from the degeneration of substantia nigra dopamine (SN DA) neurons and the basal ganglia pathophysiology triggered by this loss. However, the mechanisms that underlie the progressive degeneration of SN DA neurons, the regional network pathophysiology this causes, and PD symptoms are uncertain.

A major obstacle to answering these questions is the lack of a progressive animal model of PD amenable to the application of advanced tools for the interrogation of neurons and neural networks. Recently, our group has developed a new mouse model of PD that overcomes this obstacle, giving us an extraordinary opportunity.

The model is predicated on the observation that loss of functional mitochondrial complex I (MCI) – a critical element in the electron transport chain – is a common feature of the SN in PD patients. We found that knocking out the catalytic subunit of MCI (NDUFS2) in SN DA neurons leads to progressive, levodopa-responsive parkinsonism in mice.

Importantly, in this so-called MCI-Park mouse, DA neuron pathology begins in nigrostriatal axons and then proceeds to the somatodendritic region - reproducing a key feature of human PD pathology. This human-like staging of pathology should provide clues not only to PD pathogenesis but also to the roles played by regional network pathophysiology in the emergence of motor symptoms.

By combining the expertise of the Surmeier and Bevan labs, we can rigorously characterize the mechanisms underlying the emergence of motor deficits in the MCI-Park model through a battery of complementary cutting-edge optical, electrophysiological, optogenetic, chemogenetic, electrochemical, anatomical, behavioral, and transcriptomic approaches.

We propose three specific aims:

1) Determine the mechanisms underlying cellular and network pathology in early-stage MCI-Park mice, where the motor impairment is modest.
2) Determine the mechanisms underlying cellular and network pathology in late-stage MCI-Park mice that exhibit profound, levodopa-responsive motor deficits.
3) Determine whether basal ganglia pathophysiology and motor deficits in late-stage MCI-Park mice can be slowed or reversed.

Execution of these aims should not only provide fundamental new insight into the mechanisms underlying the progression of PD but could also lead to novel therapeutic strategies for restoring function in symptomatic PD patients.
Funding Goals
(1) TO SUPPORT EXTRAMURAL RESEARCH FUNDED BY THE NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE (NINDS) INCLUDING: BASIC RESEARCH THAT EXPLORES THE FUNDAMENTAL STRUCTURE AND FUNCTION OF THE BRAIN AND THE NERVOUS SYSTEM, RESEARCH TO UNDERSTAND THE CAUSES AND ORIGINS OF PATHOLOGICAL CONDITIONS OF THE NERVOUS SYSTEM WITH THE GOAL OF PREVENTING THESE DISORDERS, RESEARCH ON THE NATURAL COURSE OF NEUROLOGICAL DISORDERS, IMPROVED METHODS OF DISEASE PREVENTION, NEW METHODS OF DIAGNOSIS AND TREATMENT, DRUG DEVELOPMENT, DEVELOPMENT OF NEURAL DEVICES, CLINICAL TRIALS, AND RESEARCH TRAINING IN BASIC, TRANSLATIONAL AND CLINICAL NEUROSCIENCE. THE INSTITUTE IS THE LARGEST FUNDER OF BASIC NEUROSCIENCE IN THE US AND SUPPORTS RESEARCH ON TOPICS INCLUDING BUT NOT LIMITED TO: DEVELOPMENT OF THE NERVOUS SYSTEM, INCLUDING NEUROGENESIS AND PROGENITOR CELL BIOLOGY, SIGNAL TRANSDUCTION IN DEVELOPMENT AND PLASTICITY, AND PROGRAMMED CELL DEATH, SYNAPSE FORMATION, FUNCTION, AND PLASTICITY, LEARNING AND MEMORY, CHANNELS, TRANSPORTERS, AND PUMPS, CIRCUIT FORMATION AND MODULATION, BEHAVIORAL AND COGNITIVE NEUROSCIENCE, SENSORIMOTOR LEARNING, INTEGRATION AND EXECUTIVE FUNCTION, NEUROENDOCRINE SYSTEMS, SLEEP AND CIRCADIAN RHYTHMS, AND SENSORY AND MOTOR SYSTEMS. IN ADDITION, THE INSTITUTE SUPPORTS BASIC, TRANSLATIONAL AND CLINICAL STUDIES ON A NUMBER OF DISORDERS OF THE NERVOUS SYSTEM INCLUDING (BUT NOT LIMITED TO): STROKE, TRAUMATIC INJURY TO THE BRAIN, SPINAL CORD AND PERIPHERAL NERVOUS SYSTEM, NEURODEGENERATIVE DISORDERS, MOVEMENT DISORDERS, BRAIN TUMORS, CONVULSIVE DISORDERS, INFECTIOUS DISORDERS OF THE BRAIN AND NERVOUS SYSTEM, IMMUNE DISORDERS OF THE BRAIN AND NERVOUS SYSTEM, INCLUDING MULTIPLE SCLEROSIS, DISORDERS RELATED TO SLEEP, AND PAIN. PROGRAMMATIC AREAS, WHICH ARE PRIMARILY SUPPORTED BY THE DIVISION OF NEUROSCIENCE, ARE ALSO SUPPORTED BY THE DIVISION OF EXTRAMURAL ACTIVITIES, THE DIVISION OF TRANSLATIONAL RESEARCH, THE DIVISION OF CLINICAL RESEARCH, THE OFFICE OF TRAINING AND WORKFORCE DEVELOPMENT, THE OFFICE OF PROGRAMS TO ENHANCE NEUROSCIENCE WORKFORCE DEVELOPMENT, AND THE OFFICE OF INTERNATIONAL ACTIVITIES. (2) TO EXPAND AND IMPROVE THE SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM, TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, TO INCREASE SMALL BUSINESS PARTICIPATION IN FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION. TO UTILIZE THE SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAM, TO STIMULATE AND FOSTER SCIENTIFIC AND TECHNOLOGICAL INNOVATION THROUGH COOPERATIVE RESEARCH AND DEVELOPMENT CARRIED OUT BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO FOSTER TECHNOLOGY TRANSFER BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION.
Place of Performance
Chicago, Illinois 606114296 United States
Geographic Scope
Single Zip Code
Analysis Notes
Amendment Since initial award the total obligations have increased 399% from $721,195 to $3,599,326.
Northwestern University was awarded Basal Ganglia Pathology in PD: MCI-Park Mouse Model Study Project Grant R01NS121174 worth $3,599,326 from the National Institute of Neurological Disorders and Stroke in April 2021 with work to be completed primarily in Chicago Illinois United States. The grant has a duration of 5 years and was awarded through assistance program 93.853 Extramural Research Programs in the Neurosciences and Neurological Disorders. The Project Grant was awarded through grant opportunity NIH Research Project Grant (Parent R01 Clinical Trial Not Allowed).

Status
(Ongoing)

Last Modified 4/21/25

Period of Performance
4/15/21
Start Date
3/31/26
End Date
90.0% Complete

Funding Split
$3.6M
Federal Obligation
$0.0
Non-Federal Obligation
$3.6M
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to R01NS121174

Transaction History

Modifications to R01NS121174

Additional Detail

Award ID FAIN
R01NS121174
SAI Number
R01NS121174-1428458331
Award ID URI
SAI UNAVAILABLE
Awardee Classifications
Private Institution Of Higher Education
Awarding Office
75NQ00 NIH National Institute of Neurological Disorders and Stroke
Funding Office
75NQ00 NIH National Institute of Neurological Disorders and Stroke
Awardee UEI
KG76WYENL5K1
Awardee CAGE
01725
Performance District
IL-05
Senators
Richard Durbin
Tammy Duckworth

Budget Funding

Federal Account Budget Subfunction Object Class Total Percentage
National Institute of Neurological Disorders and Stroke, National Institutes of Health, Health and Human Services (075-0886) Health research and training Grants, subsidies, and contributions (41.0) $1,449,940 100%
Modified: 4/21/25