Search Prime Grants

R01MH126481

Project Grant

Overview

Grant Description
FOXP-Regulated Signaling Pathways in Brain Development - Project Summary/Abstract

The contribution of individual disease-relevant genes to brain development still remains unknown. The long-term goal of our laboratory is to elucidate the intersection of molecular signaling pathways that are disrupted in neurodevelopmental disorders with those pathways that are important for specific aspects of brain development.

Two members of the FOXP family of transcription factors, FOXP1 and FOXP2, have been linked to monogenic forms of intellectual disability, autism spectrum disorders, and specific speech and language deficits. Variants in FOXP1 or FOXP2 are among the most significant genes associated with autism spectrum disorders.

We previously showed that FOXP1 and FOXP2 both have significant contributions to cortical and striatal development. We linked these developmental changes via studies of gene expression, electrophysiology, and behaviors. We further identified non-cell-autonomous changes in gene expression using newly available single-cell RNA-sequencing technology.

Based on these data, the central hypothesis driving this proposal is that FOXP1 and FOXP2 are key orchestrators of transcriptional signaling cascades in a cell type-specific manner that are important for neuronal function and are at risk in neurodevelopmental disorders such as autism.

We propose to identify these cell type-specific contributions in the developing cortex by using rodent models through three specific aims:

1) Determine the cell type-specific gene expression programs regulated by FOXP1 in the developing cortex.

2) Determine the cell type-specific gene expression programs regulated by FOXP2 in the developing cortex.

3) Assess the role of FOXP1 and FOXP2 in cell type-specific activity-dependent neuronal function.

Together, these aims will delineate the cell type contribution of both FOXP1 and FOXP2 to cortical development. The rodent models and cell-type specific genomic datasets will provide insight into the basic molecular mechanisms governing normal mammalian brain development.
Funding Goals
THE MISSION OF THE NATIONAL INSTITUTE OF MENTAL HEALTH (NIMH) IS TO TRANSFORM THE UNDERSTANDING AND TREATMENT OF MENTAL ILLNESSES THROUGH BASIC AND CLINICAL RESEARCH, PAVING THE WAY FOR PREVENTION, RECOVERY, AND CURE. IN MAY 2020, NIMH RELEASED ITS NEW STRATEGIC PLAN FOR RESEARCH. THE NEW STRATEGIC PLAN BUILDS ON THE SUCCESSES OF PREVIOUS NIMH STRATEGIC PLANS BY PROVIDING A FRAMEWORK FOR SCIENTIFIC RESEARCH AND EXPLORATION, AND ADDRESSING NEW CHALLENGES IN MENTAL HEALTH. THE NEW STRATEGIC PLAN OUTLINES FOUR HIGH-LEVEL GOALS: GOAL 1: DEFINE THE BRAIN MECHANISMS UNDERLYING COMPLEX BEHAVIORS GOAL 2: EXAMINE MENTAL ILLNESS TRAJECTORIES ACROSS THE LIFESPAN GOAL 3: STRIVE FOR PREVENTION AND CURES GOAL 4: STRENGTHEN THE PUBLIC HEALTH IMPACT OF NIMH-SUPPORTED RESEARCH THESE FOUR GOALS FORM A BROAD ROADMAP FOR THE INSTITUTE'S RESEARCH PRIORITIES OVER THE NEXT FIVE YEARS, BEGINNING WITH THE FUNDAMENTAL SCIENCE OF THE BRAIN AND BEHAVIOR, AND EXTENDING THROUGH EVIDENCE-BASED SERVICES THAT IMPROVE PUBLIC HEALTH OUTCOMES. THE INSTITUTE'S OVERALL FUNDING STRATEGY IS TO SUPPORT A BROAD SPECTRUM OF INVESTIGATOR-INITIATED RESEARCH IN FUNDAMENTAL SCIENCE, WITH INCREASING USE OF INSTITUTE-SOLICITED INITIATIVES FOR APPLIED RESEARCH WHERE PUBLIC HEALTH IMPACT IS A SHORT-TERM MEASURE OF SUCCESS. THE NEW STRATEGIC PLAN ALSO ADDRESSES A NUMBER OF CROSS-CUTTING THEMES THAT ARE RELEVANT TO ALL RESEARCH SUPPORTED BY NIMH, THESE THEMES HIGHLIGHT AREAS WHERE NIMH-FUNDED SCIENCE MAY HAVE THE GREATEST IMPACT, BRIDGE GAPS, AND OFFER NOVEL APPROACHES TO ACCELERATE ADVANCES IN MENTAL HEALTH RESEARCH. FOR EXAMPLE, NIMH VALUES A COMPREHENSIVE RESEARCH AGENDA THAT TAKES AN INCLUSIVE APPROACH THAT ENSURES RESEARCH INTERESTS ARE VARIED, MAINTAIN DIVERSE PARTICIPATION AND PARTNERSHIPS, AND ACHIEVE RESEARCH GOALS ACROSS MULTIPLE TIMEFRAMES. THIS INCLUDES DIVERSE METHODOLOGIES, TOOLS, AND MODELS, RESEARCH ADDRESSING COMPLEX BASIC, TRANSLATIONAL, AND APPLIED QUESTIONS, RESEARCH INCLUDING BOTH SEXES AND, AS APPROPRIATE, GENETIC BACKGROUND, AND, PARTICIPANTS FROM DIVERSE RACIAL AND ETHNIC BACKGROUNDS, AND ACROSS GENDER IDENTITIES, GEOGRAPHICAL CONTEXT, SOCIOECONOMIC STATUS, NEUROTYPE, AND AGE OFFERING THE BEST POSSIBLE REPRESENTATION, FOR THE BROADEST NUMBER OF INDIVIDUALS WHO MAY ULTIMATELY BENEFIT FROM THESE SCIENTIFIC ADVANCES. TO ACCOMPLISH THE GOALS OUTLINED IN THE NEW STRATEGIC PLAN, NIMH WILL SUPPORT RESEARCH THAT AIMS: TO CHARACTERIZE THE GENOMIC, MOLECULAR, CELLULAR, AND CIRCUIT COMPONENTS CONTRIBUTING TO BRAIN ORGANIZATION AND FUNCTION, TO IDENTIFY THE DEVELOPMENTAL, FUNCTIONAL, AND REGULATORY MECHANISMS RELEVANT TO COGNITIVE, AFFECTIVE, AND SOCIAL DOMAINS, ACROSS UNITS OF ANALYSIS, AND, TO GENERATE AND VALIDATE NOVEL TOOLS, TECHNIQUES, AND MEASURES TO QUANTIFY CHANGES IN THE ACTIVITY OF MOLECULES, CELLS, CIRCUITS, AND CONNECTOMES. TO DISCOVER GENE VARIANTS AND OTHER GENOMIC ELEMENTS THAT CONTRIBUTE TO THE DEVELOPMENT OF MENTAL ILLNESSES IN DIVERSE POPULATIONS, TO ADVANCE OUR UNDERSTANDING OF THE COMPLEX ETIOLOGY OF MENTAL ILLNESSES USING MOLECULAR EPIDEMIOLOGIC APPROACHES THAT INCORPORATE INDIVIDUAL GENETIC INFORMATION IN LARGE COHORTS, TO ELUCIDATE HOW HUMAN GENETIC VARIATION AFFECTS THE COORDINATION OF MOLECULAR, CELLULAR, AND PHYSIOLOGICAL NETWORKS SUPPORTING HIGHER-ORDER FUNCTIONS AND EMERGENT PROPERTIES OF NEUROBIOLOGICAL SYSTEMS, AND, TO DEVELOP NOVEL TOOLS AND TECHNIQUES FOR THE ANALYSIS OF LARGE-SCALE GENETIC, MULTI-OMIC DATA AS IT APPLIES TO MENTAL HEALTH. TO UTILIZE CONNECTOMIC APPROACHES TO IDENTIFY BRAIN NETWORKS AND CIRCUIT COMPONENTS THAT CONTRIBUTE TO VARIOUS ASPECTS OF MENTAL FUNCTION AND DYSFUNCTION, TO DETERMINE THROUGH BRAIN-WIDE ANALYSIS HOW CHANGES IN THE PHYSIOLOGICAL PROPERTIES OF MOLECULES, CELLS, AND CIRCUITS CONTRIBUTE TO MENTAL ILLNESSES, TO DEVELOP MOLECULAR, CELLULAR, AND CIRCUIT-LEVEL BIOMARKERS OF IMPAIRED NEURAL FUNCTION IN HUMANS, AND, TO DEVELOP INNOVATIVE TECHNOLOGIES, INCLUDING NEW IMAGING, COMPUTATIONAL, PHARMACOLOGICAL, AND GENETIC TOOLS TO INTERROGATE AND MODULATE CIRCUIT ACTIVITY AND STRUCTURE ALTERED IN MENTAL ILLNESSES. TO ELUCIDATE THE MECHANISMS CONTRIBUTING TO THE TRAJECTORIES OF BRAIN DEVELOPMENT AND BEHAVIOR, AND, TO CHARACTERIZE THE EMERGENCE AND PROGRESSION OF MENTAL ILLNESSES, AND IDENTIFYING SENSITIVE PERIODS FOR OPTIMAL INTERVENTION. TO DETERMINE EARLY RISK AND PROTECTIVE FACTORS, AND RELATED MECHANISMS, TO SERVE AS NOVEL INTERVENTION GROUPS, AND, TO DEVELOP RELIABLE AND ROBUST BIOMARKERS AND ASSESSMENT TOOLS TO PREDICT ILLNESS ONSET, COURSE, AND ACROSS DIVERSE POPULATIONS. TO DEVELOP NOVEL INTERVENTIONS USING A MECHANISM-INFORMED, EXPERIMENTAL THERAPEUTICS APPROACH, AND, TO DEVELOP AND IMPLEMENT MEASUREMENT STRATEGIES TO FACILITATE MECHANISM-BASED INTERVENTION DEVELOPMENT AND TESTING. TO INVESTIGATE PERSONALIZED INTERVENTION STRATEGIES ACROSS DISEASE PROGRESSION AND DEVELOPMENT, AND, TO DEVELOP AND REFINE COMPUTATIONAL APPROACHES AND RESEARCH DESIGNS THAT CAN BE USED TO INFORM AND TEST PERSONALIZED INTERVENTIONS. TO DEVELOP AND TEST APPROACHES FOR ADAPTING, COMBINING, AND SEQUENCING INTERVENTIONS TO ACHIEVE THE GREATEST IMPACT ON THE LIVES AND FUNCTIONING OF PERSONS SEEKING CARE, TO CONDUCT EFFICIENT PRAGMATIC TRIALS THAT EMPLOY NEW TOOLS TO RAPIDLY IDENTIFY, ENGAGE, ASSESS, AND FOLLOW PARTICIPANTS IN THE CONTEXT OF ROUTINE CARE, AND, TO ENHANCE THE PRACTICAL RELEVANCE OF EFFECTIVENESS RESEARCH VIA DEPLOYMENT-FOCUSED, HYBRID, EFFECTIVENESS-IMPLEMENTATION STUDIES. TO EMPLOY ASSESSMENT PLATFORMS WITHIN HEALTHCARE SYSTEMS TO ACCURATELY ASSESS THE DISTRIBUTION AND DETERMINANTS OF MENTAL ILLNESSES AND TO INFORM STRATEGIES FOR IMPROVED SERVICES, TO OPTIMIZE REAL-WORLD DATA COLLECTION SYSTEMS TO IDENTIFY STRATEGIES FOR IMPROVING ACCESS, QUALITY, EFFECTIVENESS, AND CONTINUITY OF MENTAL HEALTH SERVICES, AND, TO COMPARE ALTERNATIVE FINANCING MODELS TO PROMOTE EFFECTIVE AND EFFICIENT CARE FOR INDIVIDUALS WITH SERIOUS EMOTIONAL DISTURBANCES AND SERIOUS MENTAL ILLNESSES. TO STRENGTHEN PARTNERSHIPS WITH KEY STAKEHOLDERS TO DEVELOP AND VALIDATE STRATEGIES FOR IMPLEMENTING, SUSTAINING, AND CONTINUOUSLY IMPROVE EVIDENCE-BASED PRACTICES, TO BUILD MODELS TO SCALE-UP EVIDENCE-BASED PRACTICES FOR USE IN PUBLIC AND PRIVATE PRIMARY CARE, SPECIALTY CARE AND OTHER SETTINGS, AND, TO DEVELOP DECISION-SUPPORT TOOLS AND TECHNOLOGIES THAT INCREASE THE EFFECTIVENESS AND CONTINUOUS IMPROVEMENT OF MENTAL HEALTH INTERVENTIONS IN PUBLIC AND PRIVATE PRIMARY CARE, SPECIALTY CARE, AND OTHER SETTINGS. TO ADAPT, VALIDATE, AND SCALE-UP PROGRAMS CURRENTLY IN USE THAT IMPROVE MENTAL HEALTH SERVICES FOR UNDERSERVED POPULATIONS, TO DEVELOP AND VALIDATE SERVICE DELIVERY MODELS THAT PROVIDE EVIDENCE-BASED CARE FOR INDIVIDUALS THROUGHOUT THE COURSE OF MENTAL ILLNESS, TO DEVELOP AND VALIDATE SYSTEMS-LEVEL STRATEGIES USING TECHNOLOGY AND OTHER APPROACHES, TO IDENTIFY, SUPPORT, AND MONITOR THE EFFECTIVENESS OF EVIDENCE-BASED CARE THROUGHOUT THE COURSE OF ILLNESS, AND, TO DEVELOP AND VALIDATE DECISION-MAKING MODELS THAT BRIDGE MENTAL HEALTH, MEDICAL, AND OTHER CARE SETTINGS TO INTEGRATE THE APPROPRIATE CARE FOR PEOPLE WITH SERIOUS MENTAL ILLNESSES AND COMORBID MEDICAL CONDITIONS.
Place of Performance
Dallas, Texas 753907208 United States
Geographic Scope
Single Zip Code
Analysis Notes
Amendment Since initial award the End Date has been shortened from 05/31/26 to 04/30/26 and the total obligations have increased 422% from $643,137 to $3,358,588.
The University Of Texas Southwestern Medical Center was awarded FOXP-Regulated Signaling in Brain Development Project Grant R01MH126481 worth $3,358,588 from the National Institute of Mental Health in June 2021 with work to be completed primarily in Dallas Texas United States. The grant has a duration of 4 years 10 months and was awarded through assistance program 93.242 Mental Health Research Grants. The Project Grant was awarded through grant opportunity Cellular and Molecular Biology of Complex Brain Disorders (R01 Clinical Trial Not Allowed).

Status
(Ongoing)

Last Modified 6/5/25

Period of Performance
6/15/21
Start Date
4/30/26
End Date
91.0% Complete

Funding Split
$3.4M
Federal Obligation
$0.0
Non-Federal Obligation
$3.4M
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to R01MH126481

Transaction History

Modifications to R01MH126481

Additional Detail

Award ID FAIN
R01MH126481
SAI Number
R01MH126481-4092073854
Award ID URI
SAI UNAVAILABLE
Awardee Classifications
Public/State Controlled Institution Of Higher Education
Awarding Office
75N700 NIH National Institute of Mental Health
Funding Office
75N700 NIH National Institute of Mental Health
Awardee UEI
YZJ6DKPM4W63
Awardee CAGE
1CNP4
Performance District
TX-30
Senators
John Cornyn
Ted Cruz

Budget Funding

Federal Account Budget Subfunction Object Class Total Percentage
National Institute of Mental Health, National Institutes of Health, Health and Human Services (075-0892) Health research and training Grants, subsidies, and contributions (41.0) $1,382,931 100%
Modified: 6/5/25