Search Prime Grants

R01MH125516

Project Grant

Overview

Grant Description
Assessing Genomic, Regulatory, and Transcriptional Variation at Single Nuclei Resolution in the Brains of Individuals with Autism Spectrum Disorder - Abstract

Autism Spectrum Disorder (ASD) is a highly heritable neurodevelopmental disorder of unknown etiology and with limited effective therapeutic options that affects millions of individuals. Our research team has a longstanding commitment to understanding the cause of ASD and the molecular processes underlying brain development, function, and pathology. We will use this experience to apply the latest molecular techniques to samples from a new repository of brain tissue from individuals with ASD to create the largest and most detailed analysis of the molecular consequences of ASD.

Genetic analyses of gene disrupting de novo mutations have identified over one hundred genes associated with ASD with three main functional groups: regulation of gene expression, neuronal communication, and cytoskeleton. Prior analyses of brain tissue from individuals with ASD have identified a group of downregulated neuronal communication genes that overlap with ASD-associated genes, and a group of upregulated glial genes that do not overlap with ASD-associated genes or variants. It is unclear if these changes reflect altered cell composition or cell function and how they relate to genetic factors.

We propose to analyze post-mortem brain samples from 40 individuals with ASD and 40 unaffected controls, sourced from the Autism BrainNet Biobank, to assess the molecular changes that occur. We will use whole-genome sequencing to identify gene disruptive variants in genes previously associated with ASD and to identify rare and common variants that may alter gene expression or splicing. In tissue samples of the prefrontal cortex and striatum from 40 cases and 40 controls, we will use recently developed single-nuclei methods to perform RNA-seq and ATAC-seq at single-cell resolution to identify ASD-related changes in gene regulation and expression in specific cell types and brain regions.

For tissue samples from the prefrontal cortex of 20 cases and 20 controls, we will also use cutting-edge single-nuclei long-read RNA-seq (ISO-Seq), along with bulk tissue RNA-seq, for an in-depth analysis of how gene isoforms differ between ASD cases and controls. Finally, we will assess how single-nuclei gene expression varies in brain organoids grown from pluripotent stem cells edited to contain mutations in three ASD-associated genes. Integrating these data, we will profile the molecular changes associated with ASD and assess how these changes vary by cell type, brain region, age, sex, seizure status, and genotype.

We will use RNAScope in situ hybridization to validate the molecular and cell composition changes we observe, and a lentivirus-based massively parallel reporter assay to test the function of regulatory regions or variants in proximity to genes with ASD-related differences in expression to validate these effects and assess causality. We hope that these insights will provide a basis for understanding the heterogeneity of ASD and the neurobiological features of this disorder, and provide molecular signatures that could be developed into future biomarkers for ASD model systems.
Funding Goals
THE MISSION OF THE NATIONAL INSTITUTE OF MENTAL HEALTH (NIMH) IS TO TRANSFORM THE UNDERSTANDING AND TREATMENT OF MENTAL ILLNESSES THROUGH BASIC AND CLINICAL RESEARCH, PAVING THE WAY FOR PREVENTION, RECOVERY, AND CURE. IN MAY 2020, NIMH RELEASED ITS NEW STRATEGIC PLAN FOR RESEARCH. THE NEW STRATEGIC PLAN BUILDS ON THE SUCCESSES OF PREVIOUS NIMH STRATEGIC PLANS BY PROVIDING A FRAMEWORK FOR SCIENTIFIC RESEARCH AND EXPLORATION, AND ADDRESSING NEW CHALLENGES IN MENTAL HEALTH. THE NEW STRATEGIC PLAN OUTLINES FOUR HIGH-LEVEL GOALS: GOAL 1: DEFINE THE BRAIN MECHANISMS UNDERLYING COMPLEX BEHAVIORS GOAL 2: EXAMINE MENTAL ILLNESS TRAJECTORIES ACROSS THE LIFESPAN GOAL 3: STRIVE FOR PREVENTION AND CURES GOAL 4: STRENGTHEN THE PUBLIC HEALTH IMPACT OF NIMH-SUPPORTED RESEARCH THESE FOUR GOALS FORM A BROAD ROADMAP FOR THE INSTITUTE'S RESEARCH PRIORITIES OVER THE NEXT FIVE YEARS, BEGINNING WITH THE FUNDAMENTAL SCIENCE OF THE BRAIN AND BEHAVIOR, AND EXTENDING THROUGH EVIDENCE-BASED SERVICES THAT IMPROVE PUBLIC HEALTH OUTCOMES. THE INSTITUTE'S OVERALL FUNDING STRATEGY IS TO SUPPORT A BROAD SPECTRUM OF INVESTIGATOR-INITIATED RESEARCH IN FUNDAMENTAL SCIENCE, WITH INCREASING USE OF INSTITUTE-SOLICITED INITIATIVES FOR APPLIED RESEARCH WHERE PUBLIC HEALTH IMPACT IS A SHORT-TERM MEASURE OF SUCCESS. THE NEW STRATEGIC PLAN ALSO ADDRESSES A NUMBER OF CROSS-CUTTING THEMES THAT ARE RELEVANT TO ALL RESEARCH SUPPORTED BY NIMH, THESE THEMES HIGHLIGHT AREAS WHERE NIMH-FUNDED SCIENCE MAY HAVE THE GREATEST IMPACT, BRIDGE GAPS, AND OFFER NOVEL APPROACHES TO ACCELERATE ADVANCES IN MENTAL HEALTH RESEARCH. FOR EXAMPLE, NIMH VALUES A COMPREHENSIVE RESEARCH AGENDA THAT TAKES AN INCLUSIVE APPROACH THAT ENSURES RESEARCH INTERESTS ARE VARIED, MAINTAIN DIVERSE PARTICIPATION AND PARTNERSHIPS, AND ACHIEVE RESEARCH GOALS ACROSS MULTIPLE TIMEFRAMES. THIS INCLUDES DIVERSE METHODOLOGIES, TOOLS, AND MODELS, RESEARCH ADDRESSING COMPLEX BASIC, TRANSLATIONAL, AND APPLIED QUESTIONS, RESEARCH INCLUDING BOTH SEXES AND, AS APPROPRIATE, GENETIC BACKGROUND, AND, PARTICIPANTS FROM DIVERSE RACIAL AND ETHNIC BACKGROUNDS, AND ACROSS GENDER IDENTITIES, GEOGRAPHICAL CONTEXT, SOCIOECONOMIC STATUS, NEUROTYPE, AND AGE OFFERING THE BEST POSSIBLE REPRESENTATION, FOR THE BROADEST NUMBER OF INDIVIDUALS WHO MAY ULTIMATELY BENEFIT FROM THESE SCIENTIFIC ADVANCES. TO ACCOMPLISH THE GOALS OUTLINED IN THE NEW STRATEGIC PLAN, NIMH WILL SUPPORT RESEARCH THAT AIMS: TO CHARACTERIZE THE GENOMIC, MOLECULAR, CELLULAR, AND CIRCUIT COMPONENTS CONTRIBUTING TO BRAIN ORGANIZATION AND FUNCTION, TO IDENTIFY THE DEVELOPMENTAL, FUNCTIONAL, AND REGULATORY MECHANISMS RELEVANT TO COGNITIVE, AFFECTIVE, AND SOCIAL DOMAINS, ACROSS UNITS OF ANALYSIS, AND, TO GENERATE AND VALIDATE NOVEL TOOLS, TECHNIQUES, AND MEASURES TO QUANTIFY CHANGES IN THE ACTIVITY OF MOLECULES, CELLS, CIRCUITS, AND CONNECTOMES. TO DISCOVER GENE VARIANTS AND OTHER GENOMIC ELEMENTS THAT CONTRIBUTE TO THE DEVELOPMENT OF MENTAL ILLNESSES IN DIVERSE POPULATIONS, TO ADVANCE OUR UNDERSTANDING OF THE COMPLEX ETIOLOGY OF MENTAL ILLNESSES USING MOLECULAR EPIDEMIOLOGIC APPROACHES THAT INCORPORATE INDIVIDUAL GENETIC INFORMATION IN LARGE COHORTS, TO ELUCIDATE HOW HUMAN GENETIC VARIATION AFFECTS THE COORDINATION OF MOLECULAR, CELLULAR, AND PHYSIOLOGICAL NETWORKS SUPPORTING HIGHER-ORDER FUNCTIONS AND EMERGENT PROPERTIES OF NEUROBIOLOGICAL SYSTEMS, AND, TO DEVELOP NOVEL TOOLS AND TECHNIQUES FOR THE ANALYSIS OF LARGE-SCALE GENETIC, MULTI-OMIC DATA AS IT APPLIES TO MENTAL HEALTH. TO UTILIZE CONNECTOMIC APPROACHES TO IDENTIFY BRAIN NETWORKS AND CIRCUIT COMPONENTS THAT CONTRIBUTE TO VARIOUS ASPECTS OF MENTAL FUNCTION AND DYSFUNCTION, TO DETERMINE THROUGH BRAIN-WIDE ANALYSIS HOW CHANGES IN THE PHYSIOLOGICAL PROPERTIES OF MOLECULES, CELLS, AND CIRCUITS CONTRIBUTE TO MENTAL ILLNESSES, TO DEVELOP MOLECULAR, CELLULAR, AND CIRCUIT-LEVEL BIOMARKERS OF IMPAIRED NEURAL FUNCTION IN HUMANS, AND, TO DEVELOP INNOVATIVE TECHNOLOGIES, INCLUDING NEW IMAGING, COMPUTATIONAL, PHARMACOLOGICAL, AND GENETIC TOOLS TO INTERROGATE AND MODULATE CIRCUIT ACTIVITY AND STRUCTURE ALTERED IN MENTAL ILLNESSES. TO ELUCIDATE THE MECHANISMS CONTRIBUTING TO THE TRAJECTORIES OF BRAIN DEVELOPMENT AND BEHAVIOR, AND, TO CHARACTERIZE THE EMERGENCE AND PROGRESSION OF MENTAL ILLNESSES, AND IDENTIFYING SENSITIVE PERIODS FOR OPTIMAL INTERVENTION. TO DETERMINE EARLY RISK AND PROTECTIVE FACTORS, AND RELATED MECHANISMS, TO SERVE AS NOVEL INTERVENTION GROUPS, AND, TO DEVELOP RELIABLE AND ROBUST BIOMARKERS AND ASSESSMENT TOOLS TO PREDICT ILLNESS ONSET, COURSE, AND ACROSS DIVERSE POPULATIONS. TO DEVELOP NOVEL INTERVENTIONS USING A MECHANISM-INFORMED, EXPERIMENTAL THERAPEUTICS APPROACH, AND, TO DEVELOP AND IMPLEMENT MEASUREMENT STRATEGIES TO FACILITATE MECHANISM-BASED INTERVENTION DEVELOPMENT AND TESTING. TO INVESTIGATE PERSONALIZED INTERVENTION STRATEGIES ACROSS DISEASE PROGRESSION AND DEVELOPMENT, AND, TO DEVELOP AND REFINE COMPUTATIONAL APPROACHES AND RESEARCH DESIGNS THAT CAN BE USED TO INFORM AND TEST PERSONALIZED INTERVENTIONS. TO DEVELOP AND TEST APPROACHES FOR ADAPTING, COMBINING, AND SEQUENCING INTERVENTIONS TO ACHIEVE THE GREATEST IMPACT ON THE LIVES AND FUNCTIONING OF PERSONS SEEKING CARE, TO CONDUCT EFFICIENT PRAGMATIC TRIALS THAT EMPLOY NEW TOOLS TO RAPIDLY IDENTIFY, ENGAGE, ASSESS, AND FOLLOW PARTICIPANTS IN THE CONTEXT OF ROUTINE CARE, AND, TO ENHANCE THE PRACTICAL RELEVANCE OF EFFECTIVENESS RESEARCH VIA DEPLOYMENT-FOCUSED, HYBRID, EFFECTIVENESS-IMPLEMENTATION STUDIES. TO EMPLOY ASSESSMENT PLATFORMS WITHIN HEALTHCARE SYSTEMS TO ACCURATELY ASSESS THE DISTRIBUTION AND DETERMINANTS OF MENTAL ILLNESSES AND TO INFORM STRATEGIES FOR IMPROVED SERVICES, TO OPTIMIZE REAL-WORLD DATA COLLECTION SYSTEMS TO IDENTIFY STRATEGIES FOR IMPROVING ACCESS, QUALITY, EFFECTIVENESS, AND CONTINUITY OF MENTAL HEALTH SERVICES, AND, TO COMPARE ALTERNATIVE FINANCING MODELS TO PROMOTE EFFECTIVE AND EFFICIENT CARE FOR INDIVIDUALS WITH SERIOUS EMOTIONAL DISTURBANCES AND SERIOUS MENTAL ILLNESSES. TO STRENGTHEN PARTNERSHIPS WITH KEY STAKEHOLDERS TO DEVELOP AND VALIDATE STRATEGIES FOR IMPLEMENTING, SUSTAINING, AND CONTINUOUSLY IMPROVE EVIDENCE-BASED PRACTICES, TO BUILD MODELS TO SCALE-UP EVIDENCE-BASED PRACTICES FOR USE IN PUBLIC AND PRIVATE PRIMARY CARE, SPECIALTY CARE AND OTHER SETTINGS, AND, TO DEVELOP DECISION-SUPPORT TOOLS AND TECHNOLOGIES THAT INCREASE THE EFFECTIVENESS AND CONTINUOUS IMPROVEMENT OF MENTAL HEALTH INTERVENTIONS IN PUBLIC AND PRIVATE PRIMARY CARE, SPECIALTY CARE, AND OTHER SETTINGS. TO ADAPT, VALIDATE, AND SCALE-UP PROGRAMS CURRENTLY IN USE THAT IMPROVE MENTAL HEALTH SERVICES FOR UNDERSERVED POPULATIONS, TO DEVELOP AND VALIDATE SERVICE DELIVERY MODELS THAT PROVIDE EVIDENCE-BASED CARE FOR INDIVIDUALS THROUGHOUT THE COURSE OF MENTAL ILLNESS, TO DEVELOP AND VALIDATE SYSTEMS-LEVEL STRATEGIES USING TECHNOLOGY AND OTHER APPROACHES, TO IDENTIFY, SUPPORT, AND MONITOR THE EFFECTIVENESS OF EVIDENCE-BASED CARE THROUGHOUT THE COURSE OF ILLNESS, AND, TO DEVELOP AND VALIDATE DECISION-MAKING MODELS THAT BRIDGE MENTAL HEALTH, MEDICAL, AND OTHER CARE SETTINGS TO INTEGRATE THE APPROPRIATE CARE FOR PEOPLE WITH SERIOUS MENTAL ILLNESSES AND COMORBID MEDICAL CONDITIONS.
Place of Performance
San Francisco, California 941582324 United States
Geographic Scope
Single Zip Code
Analysis Notes
Amendment Since initial award the End Date has been extended from 05/31/26 to 05/31/27 and the total obligations have increased 283% from $791,448 to $3,034,663.
San Francisco Regents Of The University Of California was awarded Genomic Analysis of Autism Brain Samples: Unraveling Molecular Variations Project Grant R01MH125516 worth $3,034,663 from the National Institute of Mental Health in July 2021 with work to be completed primarily in San Francisco California United States. The grant has a duration of 5 years 10 months and was awarded through assistance program 93.242 Mental Health Research Grants. The Project Grant was awarded through grant opportunity NIH Research Project Grant (Parent R01 Clinical Trial Not Allowed).

Status
(Ongoing)

Last Modified 9/5/25

Period of Performance
7/27/21
Start Date
5/31/27
End Date
70.0% Complete

Funding Split
$3.0M
Federal Obligation
$0.0
Non-Federal Obligation
$3.0M
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to R01MH125516

Subgrant Awards

Disclosed subgrants for R01MH125516

Transaction History

Modifications to R01MH125516

Additional Detail

Award ID FAIN
R01MH125516
SAI Number
R01MH125516-3243694040
Award ID URI
SAI UNAVAILABLE
Awardee Classifications
Public/State Controlled Institution Of Higher Education
Awarding Office
75N700 NIH National Institute of Mental Health
Funding Office
75N700 NIH National Institute of Mental Health
Awardee UEI
KMH5K9V7S518
Awardee CAGE
4B560
Performance District
CA-11
Senators
Dianne Feinstein
Alejandro Padilla

Budget Funding

Federal Account Budget Subfunction Object Class Total Percentage
National Institute of Mental Health, National Institutes of Health, Health and Human Services (075-0892) Health research and training Grants, subsidies, and contributions (41.0) $1,458,550 100%
Modified: 9/5/25