R01DC018805
Project Grant
Overview
Grant Description
Characterizing the Temporal Processing of Speech in the Human Auditory Cortex - Project Summary
Time is the fundamental dimension of sound, and temporal integration is thus fundamental to speech perception. To recognize a complex structure such as a word in fluent speech, the brain must integrate across many different timescales spanning tens to hundreds of milliseconds. These timescales are considerably longer than the duration of responses at the auditory nerve. Therefore, the auditory cortex must integrate acoustic information over long and varied timescales to encode linguistic units.
On the other hand, the nature of the intermediate units of representation between sound and meaning remains debated. Focal brain injuries have shown selective impairment at all levels of linguistic processing (phonemic, phonotactic, and semantic), but current models of spoken word recognition disagree on the existence and type of these representational levels. The neural basis of temporal and linguistic processing remains speculative partly due to the limited spatiotemporal resolution of noninvasive human neuroimaging techniques, which is needed to study the encoding of fluent speech.
Our multi-PI proposal overcomes these challenges by assembling a team of researchers and clinicians with complementary expertise at NYU and Columbia University. We propose to record invasively from a large number of neurosurgical patients, which provides a rare and unique opportunity to collect direct cortical recordings across several auditory regions. We propose novel experimental paradigms and analysis methods to investigate where, when, and how acoustic features of speech are integrated over time to encode linguistic units.
Our experimental paradigms will determine the functional and anatomical organization of stimulus integration periods in primary and nonprimary auditory cortical regions and relate the temporal processing in these regions to the emergence of phonemic-, phonotactic-, and semantic-level representations. Finally, we will determine the nonlinear computational mechanisms that enable the auditory cortex to integrate fast features over long durations, which is essential in speech recognition.
Understanding the temporal processing of speech in primary and nonprimary auditory cortex is critical for developing complete models of speech perception in the human brain, which is essential to understanding how these processes break down in speech and communication disorders.
Time is the fundamental dimension of sound, and temporal integration is thus fundamental to speech perception. To recognize a complex structure such as a word in fluent speech, the brain must integrate across many different timescales spanning tens to hundreds of milliseconds. These timescales are considerably longer than the duration of responses at the auditory nerve. Therefore, the auditory cortex must integrate acoustic information over long and varied timescales to encode linguistic units.
On the other hand, the nature of the intermediate units of representation between sound and meaning remains debated. Focal brain injuries have shown selective impairment at all levels of linguistic processing (phonemic, phonotactic, and semantic), but current models of spoken word recognition disagree on the existence and type of these representational levels. The neural basis of temporal and linguistic processing remains speculative partly due to the limited spatiotemporal resolution of noninvasive human neuroimaging techniques, which is needed to study the encoding of fluent speech.
Our multi-PI proposal overcomes these challenges by assembling a team of researchers and clinicians with complementary expertise at NYU and Columbia University. We propose to record invasively from a large number of neurosurgical patients, which provides a rare and unique opportunity to collect direct cortical recordings across several auditory regions. We propose novel experimental paradigms and analysis methods to investigate where, when, and how acoustic features of speech are integrated over time to encode linguistic units.
Our experimental paradigms will determine the functional and anatomical organization of stimulus integration periods in primary and nonprimary auditory cortical regions and relate the temporal processing in these regions to the emergence of phonemic-, phonotactic-, and semantic-level representations. Finally, we will determine the nonlinear computational mechanisms that enable the auditory cortex to integrate fast features over long durations, which is essential in speech recognition.
Understanding the temporal processing of speech in primary and nonprimary auditory cortex is critical for developing complete models of speech perception in the human brain, which is essential to understanding how these processes break down in speech and communication disorders.
Awardee
Funding Goals
TO INVESTIGATE SOLUTIONS TO PROBLEMS DIRECTLY RELEVANT TO INDIVIDUALS WITH DEAFNESS OR DISORDERS OF HUMAN COMMUNICATION IN THE AREAS OF HEARING, BALANCE, SMELL, TASTE, VOICE, SPEECH, AND LANGUAGE. THE NATIONAL INSTITUTE ON DEAFNESS AND OTHER COMMUNICATION DISORDERS (NIDCD) SUPPORTS RESEARCH AND RESEARCH TRAINING, INCLUDING INVESTIGATION INTO THE ETIOLOGY, PATHOLOGY, DETECTION, TREATMENT, AND PREVENTION OF DISORDERS OF HEARING AND OTHER COMMUNICATION PROCESSES, PRIMARILY THROUGH THE SUPPORT OF BASIC AND APPLIED RESEARCH IN ANATOMY, AUDIOLOGY, BIOCHEMISTRY, BIOENGINEERING, EPIDEMIOLOGY, GENETICS, IMMUNOLOGY, MICROBIOLOGY, MOLECULAR BIOLOGY, THE NEUROSCIENCES, OTOLARYNGOLOGY, PSYCHOLOGY, PHARMACOLOGY, PHYSIOLOGY, PSYCHOPHYSICS, SPEECH-LANGUAGE PATHOLOGY, AND OTHER SCIENTIFIC DISCIPLINES. THE NIDCD SUPPORTS: (1) RESEARCH INTO THE EVALUATION OF TECHNIQUES AND DEVICES USED IN DIAGNOSIS, TREATMENT, REHABILITATION, AND PREVENTION OF DISORDERS OF HEARING AND OTHER COMMUNICATION PROCESSES, (2) RESEARCH INTO PREVENTION AND EARLY DETECTION AND DIAGNOSIS OF HEARING LOSS AND SPEECH, VOICE, AND LANGUAGE DISORDERS AND RESEARCH INTO PREVENTING THE EFFECTS OF SUCH DISORDERS BY MEANS OF APPROPRIATE REFERRAL AND REHABILITATION, (3) RESEARCH INTO THE DETECTION, TREATMENT, AND PREVENTION OF DISORDERS OF HEARING AND OTHER COMMUNICATION PROCESSES IN THE ELDERLY POPULATION AND ITS REHABILITATION TO ENSURE CONTINUED EFFECTIVE COMMUNICATION SKILLS, AND (4) RESEARCH TO EXPAND KNOWLEDGE OF THE EFFECTS OF ENVIRONMENTAL AGENTS THAT INFLUENCE HEARING OR OTHER COMMUNICATION PROCESSES. SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM: TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, TO ENCOURAGE SMALL BUSINESS PARTICIPATION IN FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION. SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAM: TO STIMULATE AND FOSTER SCIENTIFIC AND TECHNOLOGICAL INNOVATION THROUGH COOPERATIVE RESEARCH AND DEVELOPMENT CARRIED OUT BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO FOSTER TECHNOLOGY TRANSFER BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION.
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
New York,
New York
100168203
United States
Geographic Scope
Single Zip Code
Related Opportunity
Analysis Notes
Amendment Since initial award the total obligations have increased 390% from $681,122 to $3,334,410.
New York University was awarded
Temporal Speech Processing in Auditory Cortex - Research Project
Project Grant R01DC018805
worth $3,334,410
from National Institute on Deafness and Other Communication Disorders in September 2021 with work to be completed primarily in New York New York United States.
The grant
has a duration of 4 years 8 months and
was awarded through assistance program 93.173 Research Related to Deafness and Communication Disorders.
The Project Grant was awarded through grant opportunity NIH Research Project Grant (Parent R01 Clinical Trial Not Allowed).
Status
(Ongoing)
Last Modified 5/20/25
Period of Performance
9/1/21
Start Date
5/31/26
End Date
Funding Split
$3.3M
Federal Obligation
$0.0
Non-Federal Obligation
$3.3M
Total Obligated
Activity Timeline
Subgrant Awards
Disclosed subgrants for R01DC018805
Transaction History
Modifications to R01DC018805
Additional Detail
Award ID FAIN
R01DC018805
SAI Number
R01DC018805-1961224096
Award ID URI
SAI UNAVAILABLE
Awardee Classifications
Private Institution Of Higher Education
Awarding Office
75N300 NIH National Institute on Deafness and Other Communication Disorders
Funding Office
75N300 NIH National Institute on Deafness and Other Communication Disorders
Awardee UEI
M5SZJ6VHUHN8
Awardee CAGE
3D476
Performance District
NY-12
Senators
Kirsten Gillibrand
Charles Schumer
Charles Schumer
Budget Funding
| Federal Account | Budget Subfunction | Object Class | Total | Percentage |
|---|---|---|---|---|
| National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Health and Human Services (075-0890) | Health research and training | Grants, subsidies, and contributions (41.0) | $1,330,894 | 100% |
Modified: 5/20/25