Search Prime Grants

R01AI155975

Project Grant

Overview

Grant Description
Selecting HA Glycosylation for Improved Vaccine Responses

This application responds to PA-18-859 "Advancing Research Needed to Develop a Universal Influenza Vaccine" and addresses the goal to "support rational design of universal influenza vaccines". The low influenza A virus (IAV) vaccine effectiveness (VE) stems from the ability of the virus to evade existing immunity. Its error-prone polymerase enables rapid evolution of the surface glycoprotein antigens hemagglutinin (HA) and neuraminidase (NA).

Significantly, among the more prevalent mutations that occur as an IAV strain undergoes antigenic drift is the appearance of new N-glycosylation consensus sequences (sequons) on the HA globular domain. The appearance of new glycans shields underlying amino acid residues from antibody contact. However, because the host receptor binding sites (RBSS) also reside in the HA head group, variations in head group glycosylation have the simultaneous potential to harm viral fitness by interfering with virus binding to its host receptor.

HA glycosylation is macro- and micro-heterogeneous, meaning that each HA glycosite has a distribution of glycoforms that differ in their physicochemical and lectin-binding properties. HA therefore consists of heterogeneous populations that differ by glycosylation, antigenicity, and immunogenicity. Unfortunately, the glycosylated structures of HA populations most suited for vaccine use remain unknown for IAV strains. This lack of information results in over-reliance on genomic information that cannot predict the level of glycosylation at a given site, the compositions of the attached glycans, and which glycosylated populations of HA are most immunogenic.

We propose to use glycoproteomics, molecular modeling, and antigenic cartography of HA glyco-populations to develop a detailed understanding of the relationship between HA glycosylation and immunogenicity for representative H1N1 strains. This study will enhance our understanding of the natural history of influenza viruses. In addition, we anticipate that this knowledge could be employed to select HA sequences for producing recombinant influenza vaccines with enhanced immunogenicity and VE. Unlike vaccines based on attenuated or inactivated virus, recombinant vaccines are created synthetically and can be prepared in advance of the emergence of a seasonal or pandemic strain of virus. Knowledge of the optimal HA glycosylation pattern would provide important guidance in recombinant vaccine design.
Funding Goals
TO ASSIST PUBLIC AND PRIVATE NONPROFIT INSTITUTIONS AND INDIVIDUALS TO ESTABLISH, EXPAND AND IMPROVE BIOMEDICAL RESEARCH AND RESEARCH TRAINING IN INFECTIOUS DISEASES AND RELATED AREAS, TO CONDUCT DEVELOPMENTAL RESEARCH, TO PRODUCE AND TEST RESEARCH MATERIALS. TO ASSIST PUBLIC, PRIVATE AND COMMERCIAL INSTITUTIONS TO CONDUCT DEVELOPMENTAL RESEARCH, TO PRODUCE AND TEST RESEARCH MATERIALS, TO PROVIDE RESEARCH SERVICES AS REQUIRED BY THE AGENCY FOR PROGRAMS IN INFECTIOUS DISEASES, AND CONTROLLING DISEASE CAUSED BY INFECTIOUS OR PARASITIC AGENTS, ALLERGIC AND IMMUNOLOGIC DISEASES AND RELATED AREAS. PROJECTS RANGE FROM STUDIES OF MICROBIAL PHYSIOLOGY AND ANTIGENIC STRUCTURE TO COLLABORATIVE TRIALS OF EXPERIMENTAL DRUGS AND VACCINES, MECHANISMS OF RESISTANCE TO ANTIBIOTICS AS WELL AS RESEARCH DEALING WITH EPIDEMIOLOGICAL OBSERVATIONS IN HOSPITALIZED PATIENTS OR COMMUNITY POPULATIONS AND PROGRESS IN ALLERGIC AND IMMUNOLOGIC DISEASES. BECAUSE OF THIS DUAL FOCUS, THE PROGRAM ENCOMPASSES BOTH BASIC RESEARCH AND CLINICAL RESEARCH. SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM EXPANDS AND IMPROVES PRIVATE SECTOR PARTICIPATION IN BIOMEDICAL RESEARCH. THE SBIR PROGRAM INTENDS TO INCREASE AND FACILITATE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, TO INCREASE SMALL BUSINESS PARTICIPATION IN FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION. THE SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAM STIMULATES AND FOSTERS SCIENTIFIC AND TECHNOLOGICAL INNOVATION THROUGH COOPERATIVE RESEARCH AND DEVELOPMENT CARRIED OUT BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO FOSTER TECHNOLOGY TRANSFER BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION. RESEARCH CAREER DEVELOPMENT AWARDS SUPPORT THE DEVELOPMENT OF SCIENTISTS DURING THE FORMATIVE STAGES OF THEIR CAREERS. INDIVIDUAL NATIONAL RESEARCH SERVICE AWARDS (NRSAS) ARE MADE DIRECTLY TO APPROVE APPLICANTS FOR RESEARCH TRAINING IN SPECIFIED BIOMEDICAL SHORTAGE AREAS. IN ADDITION, INSTITUTIONAL NATIONAL RESEARCH SERVICE AWARDS ARE MADE TO ENABLE INSTITUTIONS TO SELECT AND MAKE AWARDS TO INDIVIDUALS TO RECEIVE TRAINING UNDER THE AEGIS OF THEIR INSTITUTIONAL PROGRAM.
Place of Performance
Boston, Massachusetts 021182646 United States
Geographic Scope
Single Zip Code
Analysis Notes
Amendment Since initial award the total obligations have increased 382% from $821,674 to $3,957,417.
Trustees Of Boston University was awarded Optimizing HA Glycosylation for Enhanced Influenza Vaccine Efficacy Project Grant R01AI155975 worth $3,957,417 from the National Institute of Allergy and Infectious Diseases in June 2021 with work to be completed primarily in Boston Massachusetts United States. The grant has a duration of 5 years and was awarded through assistance program 93.855 Allergy and Infectious Diseases Research. The Project Grant was awarded through grant opportunity Advancing Research Needed to Develop a Universal Influenza Vaccine (R01 Clinical Trial Not Allowed).

Status
(Ongoing)

Last Modified 5/5/25

Period of Performance
6/9/21
Start Date
5/31/26
End Date
89.0% Complete

Funding Split
$4.0M
Federal Obligation
$0.0
Non-Federal Obligation
$4.0M
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to R01AI155975

Subgrant Awards

Disclosed subgrants for R01AI155975

Transaction History

Modifications to R01AI155975

Additional Detail

Award ID FAIN
R01AI155975
SAI Number
R01AI155975-2632971307
Award ID URI
SAI UNAVAILABLE
Awardee Classifications
Private Institution Of Higher Education
Awarding Office
75NM00 NIH National Institute of Allergy and Infectious Diseases
Funding Office
75NM00 NIH National Institute of Allergy and Infectious Diseases
Awardee UEI
FBYMGMHW4X95
Awardee CAGE
4CY87
Performance District
MA-07
Senators
Edward Markey
Elizabeth Warren

Budget Funding

Federal Account Budget Subfunction Object Class Total Percentage
National Institute of Allergy and Infectious Diseases, National Institutes of Health, Health and Human Services (075-0885) Health research and training Grants, subsidies, and contributions (41.0) $1,584,868 100%
Modified: 5/5/25