R01AI155398
Project Grant
Overview
Grant Description
Tryptophan Derivatives in EHEC Pathogenesis - Project Summary
The colon contains tryptophan derivatives such as indole, which is a microbiota-derived signaling molecule, and the host-derived serotonin neurotransmitter that is primarily synthesized in the GI tract. Indole is also known to be absorbed by host cells and helps strengthen the integrity of the intestinal barrier, being regarded as a beneficial chemical cue within microbial/host interactions.
Indole is synthesized by tryptophanase, which is encoded by the TnaA gene. We have shown that the concentration of indole is significantly higher in the lumen of the colon (the compartment where the microbiota resides) compared to colonic tissues (where indole is absorbed by intestinal epithelial cells).
Serotonin is synthesized in enterochromaffin cells by the enzyme tryptophan hydroxylase (TPH1). Upon its synthesis, serotonin is released into the lamina propria and is secreted into the lumen. Serotonin signaling in the intestinal mucosa is terminated by removal of serotonin by the serotonin selective reuptake transporter (SERT), which is expressed by epithelial cells.
We showed that both serotonin and indole converge to decrease virulence gene expression from enterohemorrhagic E. coli (EHEC) and Citrobacter rodentium, a murine pathogen employed as a surrogate animal model for EHEC. We also identified the bacterial receptor for these signals as CPXA. Upon sensing serotonin and/or indole, CPXA functions primarily as a phosphatase, dephosphorylating itself and CPXR, that activates virulence in its phosphorylated state. Through transcriptome studies, we also identified the indole sequestering receptor (ISR), which in the absence of indole directly activates virulence expression. However, in the presence of indole, ISR is no longer able to activate transcription of virulence genes.
Using TPH1 pharmacological inhibitors (decrease the levels of serotonin in the gut) and SERT knockout mice (have increased levels of luminal serotonin), we showed that the presence of higher levels of serotonin in the intestine of mice decreased virulence in C. rodentium, while decreased levels of serotonin are conducive to increased pathogenesis. Moreover, we synthetically altered the concentration of indole in the GI tract of mice. This allowed us to assess the role of self-produced versus microbiota-produced indole and show that decreased indole concentrations promote bacterial pathogenesis, while increased levels of indole decrease bacterial virulence gene expression during murine infection.
Altogether, both serotonin and indole decrease virulence of C. rodentium during murine infection. Our studies show that fluctuations in the levels of indole and the serotonin neurotransmitter significantly impact disease prognosis. However, several questions regarding this exquisite signaling regulation of bacterial virulence remain unanswered.
Consequently, the specific aims of this grant are:
AIM 1. Define the CPXA/CPXR and ISR serotonin/indole signaling cascade.
AIM 2. Investigate the intersection of serotonin with endogenous and exogenous indole signaling in bacterial pathogenesis during mammalian infection.
The colon contains tryptophan derivatives such as indole, which is a microbiota-derived signaling molecule, and the host-derived serotonin neurotransmitter that is primarily synthesized in the GI tract. Indole is also known to be absorbed by host cells and helps strengthen the integrity of the intestinal barrier, being regarded as a beneficial chemical cue within microbial/host interactions.
Indole is synthesized by tryptophanase, which is encoded by the TnaA gene. We have shown that the concentration of indole is significantly higher in the lumen of the colon (the compartment where the microbiota resides) compared to colonic tissues (where indole is absorbed by intestinal epithelial cells).
Serotonin is synthesized in enterochromaffin cells by the enzyme tryptophan hydroxylase (TPH1). Upon its synthesis, serotonin is released into the lamina propria and is secreted into the lumen. Serotonin signaling in the intestinal mucosa is terminated by removal of serotonin by the serotonin selective reuptake transporter (SERT), which is expressed by epithelial cells.
We showed that both serotonin and indole converge to decrease virulence gene expression from enterohemorrhagic E. coli (EHEC) and Citrobacter rodentium, a murine pathogen employed as a surrogate animal model for EHEC. We also identified the bacterial receptor for these signals as CPXA. Upon sensing serotonin and/or indole, CPXA functions primarily as a phosphatase, dephosphorylating itself and CPXR, that activates virulence in its phosphorylated state. Through transcriptome studies, we also identified the indole sequestering receptor (ISR), which in the absence of indole directly activates virulence expression. However, in the presence of indole, ISR is no longer able to activate transcription of virulence genes.
Using TPH1 pharmacological inhibitors (decrease the levels of serotonin in the gut) and SERT knockout mice (have increased levels of luminal serotonin), we showed that the presence of higher levels of serotonin in the intestine of mice decreased virulence in C. rodentium, while decreased levels of serotonin are conducive to increased pathogenesis. Moreover, we synthetically altered the concentration of indole in the GI tract of mice. This allowed us to assess the role of self-produced versus microbiota-produced indole and show that decreased indole concentrations promote bacterial pathogenesis, while increased levels of indole decrease bacterial virulence gene expression during murine infection.
Altogether, both serotonin and indole decrease virulence of C. rodentium during murine infection. Our studies show that fluctuations in the levels of indole and the serotonin neurotransmitter significantly impact disease prognosis. However, several questions regarding this exquisite signaling regulation of bacterial virulence remain unanswered.
Consequently, the specific aims of this grant are:
AIM 1. Define the CPXA/CPXR and ISR serotonin/indole signaling cascade.
AIM 2. Investigate the intersection of serotonin with endogenous and exogenous indole signaling in bacterial pathogenesis during mammalian infection.
Awardee
Funding Goals
TO ASSIST PUBLIC AND PRIVATE NONPROFIT INSTITUTIONS AND INDIVIDUALS TO ESTABLISH, EXPAND AND IMPROVE BIOMEDICAL RESEARCH AND RESEARCH TRAINING IN INFECTIOUS DISEASES AND RELATED AREAS, TO CONDUCT DEVELOPMENTAL RESEARCH, TO PRODUCE AND TEST RESEARCH MATERIALS. TO ASSIST PUBLIC, PRIVATE AND COMMERCIAL INSTITUTIONS TO CONDUCT DEVELOPMENTAL RESEARCH, TO PRODUCE AND TEST RESEARCH MATERIALS, TO PROVIDE RESEARCH SERVICES AS REQUIRED BY THE AGENCY FOR PROGRAMS IN INFECTIOUS DISEASES, AND CONTROLLING DISEASE CAUSED BY INFECTIOUS OR PARASITIC AGENTS, ALLERGIC AND IMMUNOLOGIC DISEASES AND RELATED AREAS. PROJECTS RANGE FROM STUDIES OF MICROBIAL PHYSIOLOGY AND ANTIGENIC STRUCTURE TO COLLABORATIVE TRIALS OF EXPERIMENTAL DRUGS AND VACCINES, MECHANISMS OF RESISTANCE TO ANTIBIOTICS AS WELL AS RESEARCH DEALING WITH EPIDEMIOLOGICAL OBSERVATIONS IN HOSPITALIZED PATIENTS OR COMMUNITY POPULATIONS AND PROGRESS IN ALLERGIC AND IMMUNOLOGIC DISEASES. BECAUSE OF THIS DUAL FOCUS, THE PROGRAM ENCOMPASSES BOTH BASIC RESEARCH AND CLINICAL RESEARCH. SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM EXPANDS AND IMPROVES PRIVATE SECTOR PARTICIPATION IN BIOMEDICAL RESEARCH. THE SBIR PROGRAM INTENDS TO INCREASE AND FACILITATE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, TO INCREASE SMALL BUSINESS PARTICIPATION IN FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION. THE SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAM STIMULATES AND FOSTERS SCIENTIFIC AND TECHNOLOGICAL INNOVATION THROUGH COOPERATIVE RESEARCH AND DEVELOPMENT CARRIED OUT BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO FOSTER TECHNOLOGY TRANSFER BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION. RESEARCH CAREER DEVELOPMENT AWARDS SUPPORT THE DEVELOPMENT OF SCIENTISTS DURING THE FORMATIVE STAGES OF THEIR CAREERS. INDIVIDUAL NATIONAL RESEARCH SERVICE AWARDS (NRSAS) ARE MADE DIRECTLY TO APPROVE APPLICANTS FOR RESEARCH TRAINING IN SPECIFIED BIOMEDICAL SHORTAGE AREAS. IN ADDITION, INSTITUTIONAL NATIONAL RESEARCH SERVICE AWARDS ARE MADE TO ENABLE INSTITUTIONS TO SELECT AND MAKE AWARDS TO INDIVIDUALS TO RECEIVE TRAINING UNDER THE AEGIS OF THEIR INSTITUTIONAL PROGRAM.
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Madison,
Wisconsin
53715
United States
Geographic Scope
Single Zip Code
Related Opportunity
Analysis Notes
Amendment Since initial award the total obligations have increased 382% from $627,020 to $3,024,032.
University Of Wisconsin System was awarded
Serotonin and Indole Signaling in Bacterial Pathogenesis - Grant Title
Project Grant R01AI155398
worth $3,024,032
from the National Institute of Allergy and Infectious Diseases in February 2021 with work to be completed primarily in Madison Wisconsin United States.
The grant
has a duration of 5 years and
was awarded through assistance program 93.855 Allergy and Infectious Diseases Research.
The Project Grant was awarded through grant opportunity NIH Research Project Grant (Parent R01 Clinical Trial Not Allowed).
Status
(Ongoing)
Last Modified 2/20/25
Period of Performance
2/1/21
Start Date
1/31/26
End Date
Funding Split
$3.0M
Federal Obligation
$0.0
Non-Federal Obligation
$3.0M
Total Obligated
Activity Timeline
Transaction History
Modifications to R01AI155398
Additional Detail
Award ID FAIN
R01AI155398
SAI Number
R01AI155398-4110911510
Award ID URI
SAI UNAVAILABLE
Awardee Classifications
Public/State Controlled Institution Of Higher Education
Awarding Office
75NM00 NIH NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
Funding Office
75NM00 NIH NATIONAL INSTITUTE OF ALLERGY AND INFECTIOUS DISEASES
Awardee UEI
LCLSJAGTNZQ7
Awardee CAGE
09FZ2
Performance District
WI-02
Senators
Tammy Baldwin
Ron Johnson
Ron Johnson
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
National Institute of Allergy and Infectious Diseases, National Institutes of Health, Health and Human Services (075-0885) | Health research and training | Grants, subsidies, and contributions (41.0) | $1,223,717 | 100% |
Modified: 2/20/25