Search Prime Grants

R01AG072643

Project Grant

Overview

Grant Description
NPTX2: Preserving Memory Circuits in Normative Aging and Alzheimer's Disease - Abstract

The effect of aging on the human brain shows wide individual variation ranging from early onset Alzheimer's disease (AD) to maintenance of cognitive clarity into the 10th decade. The challenge is to understand why aging can have such disparate outcomes and why it contributes so profoundly to the risk of neurodegenerative disease.

We have examined aging and AD from the perspective of molecular pathways that underlie memory consolidation and determined that a gene termed NPTX2 provides an important clue to human cognitive failure. NPTX2 is expressed by pyramid neurons and secreted at their excitatory synapses on parvalbumin interneurons (PV) to control inhibitory circuit function. NPTX2 and markers of PV function are prominently down-regulated in the brain of humans with AD, and cerebrospinal fluid (CSF) levels of NPTX2 correlate with both disease state and cognitive performance. NPTX2 is not down-regulated in the brains of individuals who maintain cognitive clarity despite amyloid accumulation (asymptomatic AD). These and other findings support the hypothesis that NPTX2 is associated with brain resilience critical for cognition and fails in the shift from healthy to unhealthy aging.

Aim 1 will identify signaling pathways associated with preserved or deteriorated NPTX2 expression across the spectrum from older individuals with exceptional cognition to those with AD. Studies use an approach of targeted proteomics combined with bulk and single nuclei RNAseq and will specifically examine the hypothesis that NPTX2 loss-of-function is associated with changes in interneuron cell properties.

Aim 2 extends the goals of Aim 1 to establish the cellular mechanism of NPTX2 down-regulation using isogenic human induced pluripotent stem (iPS) neurons encoding familial mutations of APP and PS1. iPS neurons with familial Alzheimer's disease (FAD) mutations show profound and specific reductions of NPTX2 expression and provide an extraordinary opportunity to isolate and validate critical disease pathways. Analyses will include TMT differential mass spectroscopy and RNAseq. Candidate pathways will be manipulated and tested using CRISPR and pharmacological approaches.

Aim 3 will provide the first test of the hypothesis that NPTX2 loss of function (LOF) in the adult brain is causal for circuit dysfunction and cognitive decline in the context of AD pathogenesis. Experiments use a newly established rat genetic model for conditional deletion of NPTX2 in a transgenic APP/PS1 AD model (TG344-AD). Analyses will include high-density electrophysiological recordings in hippocampal subregions CA1 and CA3, together with behavior tests and histopathological assessments of AD markers. Single nuclei RNAseq performed in CA3 will define the signature of NPTX2 LOF in the context of amyloid pathology. These data will be cross-referenced with findings from Aims 1 and 2 as part of an integrated interspecies analysis of the cause and consequences of NPTX2 LOF.

Combined studies will deepen our understanding of mechanisms that can confer cognitive health or bias the brain towards disease.
Funding Goals
TO ENCOURAGE BIOMEDICAL, SOCIAL, AND BEHAVIORAL RESEARCH AND RESEARCH TRAINING DIRECTED TOWARD GREATER UNDERSTANDING OF THE AGING PROCESS AND THE DISEASES, SPECIAL PROBLEMS, AND NEEDS OF PEOPLE AS THEY AGE. THE NATIONAL INSTITUTE ON AGING HAS ESTABLISHED PROGRAMS TO PURSUE THESE GOALS. THE DIVISION OF AGING BIOLOGY EMPHASIZES UNDERSTANDING THE BASIC BIOLOGICAL PROCESSES OF AGING. THE DIVISION OF GERIATRICS AND CLINICAL GERONTOLOGY SUPPORTS RESEARCH TO IMPROVE THE ABILITIES OF HEALTH CARE PRACTITIONERS TO RESPOND TO THE DISEASES AND OTHER CLINICAL PROBLEMS OF OLDER PEOPLE. THE DIVISION OF BEHAVIORAL AND SOCIAL RESEARCH SUPPORTS RESEARCH THAT WILL LEAD TO GREATER UNDERSTANDING OF THE SOCIAL, CULTURAL, ECONOMIC AND PSYCHOLOGICAL FACTORS THAT AFFECT BOTH THE PROCESS OF GROWING OLD AND THE PLACE OF OLDER PEOPLE IN SOCIETY. THE DIVISION OF NEUROSCIENCE FOSTERS RESEARCH CONCERNED WITH THE AGE-RELATED CHANGES IN THE NERVOUS SYSTEM AS WELL AS THE RELATED SENSORY, PERCEPTUAL, AND COGNITIVE PROCESSES ASSOCIATED WITH AGING AND HAS A SPECIAL EMPHASIS ON ALZHEIMER'S DISEASE. SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM: TO EXPAND AND IMPROVE THE SBIR PROGRAM, TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, TO INCREASE SMALL BUSINESS PARTICIPATION IN FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION. SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAM: TO STIMULATE AND FOSTER SCIENTIFIC AND TECHNOLOGICAL INNOVATION THROUGH COOPERATIVE RESEARCH DEVELOPMENT CARRIED OUT BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO FOSTER TECHNOLOGY TRANSFER BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION.
Grant Program (CFDA)
Place of Performance
Tucson, Arizona 85721 United States
Geographic Scope
Single Zip Code
Analysis Notes
Amendment Since initial award the total obligations have increased 361% from $1,237,047 to $5,697,103.
University Of Arizona was awarded NPTX2: Memory Circuits in Aging & Alzheimer's Disease Project Grant R01AG072643 worth $5,697,103 from National Institute on Aging in May 2021 with work to be completed primarily in Tucson Arizona United States. The grant has a duration of 5 years and was awarded through assistance program 93.866 Aging Research. The Project Grant was awarded through grant opportunity Research on Current Topics in Alzheimer's Disease and Its Related Dementias (R01 Clinical Trial Optional).

Status
(Ongoing)

Last Modified 6/20/25

Period of Performance
5/1/21
Start Date
4/30/26
End Date
91.0% Complete

Funding Split
$5.7M
Federal Obligation
$0.0
Non-Federal Obligation
$5.7M
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to R01AG072643

Subgrant Awards

Disclosed subgrants for R01AG072643

Transaction History

Modifications to R01AG072643

Additional Detail

Award ID FAIN
R01AG072643
SAI Number
R01AG072643-2900384719
Award ID URI
SAI UNAVAILABLE
Awardee Classifications
Public/State Controlled Institution Of Higher Education
Awarding Office
75NN00 NIH National Insitute on Aging
Funding Office
75NN00 NIH National Insitute on Aging
Awardee UEI
ED44Y3W6P7B9
Awardee CAGE
0LJH3
Performance District
AZ-07
Senators
Kyrsten Sinema
Mark Kelly

Budget Funding

Federal Account Budget Subfunction Object Class Total Percentage
National Institute on Aging, National Institutes of Health, Health and Human Services (075-0843) Health research and training Grants, subsidies, and contributions (41.0) $2,243,587 100%
Modified: 6/20/25