R01AG067763
Project Grant
Overview
Grant Description
Molecular Characterization of Extracellular Vesicles for the Spread of Misfolded Tau Protein
Neurofibrillary tangles, composed of intracellular aggregates of hyperphosphorylated microtubule-associated protein tau (tau), are by far the most correlated pathology for clinical symptoms of Alzheimer's disease (AD). Emerging evidence suggests that extracellular vesicles (EVs), such as exosomes and microvesicles, transfer pathological tau between cells as vehicles, propagating tau pathology. It is urgently important to find the molecular basis of brain-derived EVs, which may critically regulate EV uptake by neurons and aggregation of tau protein in EVs and/or recipient neurons.
We have recently established the method for isolating EVs from human brain samples and successfully performed their proteomic profiling. We found that selective molecules from the EV proteomics datasets were able to differentiate human AD-EV from healthy control (CTRL)-EV with 88% accuracy by machine learning analysis, confirming the pathogenic character of AD-EV molecules. Furthermore, our exciting preliminary data have shown that AD-EV have significantly higher tau seeding activity compared to CTRL-EV by FRET sensor tau seeding assay, with subsets of EV molecules showing significant association with tau seeding activity.
This proposed project will fortify these preliminary results and find the converging or specific mechanisms among tauopathies for mediating tau aggregation and its seeding via EV uptake through proteomics and biological examination of brain-derived EV samples. To meet this challenge, we assembled a multi-disciplinary team of investigators who have a strong record of accomplishments in biologic (Ikezu), proteomic (Emili), and bioengineering and bioinformatic analysis (Issador).
In Aim 1, we will examine EV samples from 240 new brain specimens (40 AD, 40 CTE, 40 LBD, 40 PSP, 40 CBD, and 40 CTRL) for precision mass-spectrometry-based proteomics and tau-interactomes, and analyze those datasets by the machine learning approach. Aim 2 will examine the efficiency of tau propagation using tau fibrils, oligomers, and EVs isolated from the same donors of the 5 different tauopathies and control cases in vitro and in vivo using FRET-based tau seeding assay and EV uptake by primary cultured mouse cortical neurons in vitro. EV-associated tau will be further characterized by the biochemical and microscopy-based analysis for their conformational and posttranslational changes. We will evaluate the difference in tau propagation after the intracranial injection of the tau seeds from different tauopathy brains using our recently established mouse models.
Aim 3 will identify candidate molecules most likely involved in EV uptake and tau seeding activity by bioinformatic analysis of the proteome dataset (Aim 1) and biological datasets (Aim 2). We will then test the functional roles of the identified molecules on EV uptake, tau seeding activities, and neuronal firing activities in vitro. The candidate molecules will be specifically targeted by gene silencing or antagonists for their therapeutic potential to halt tau propagation in vitro and in vivo. Successful identification of responsible molecules for tau propagation will serve as a foundation for understanding EV-mediated disease progression.
Neurofibrillary tangles, composed of intracellular aggregates of hyperphosphorylated microtubule-associated protein tau (tau), are by far the most correlated pathology for clinical symptoms of Alzheimer's disease (AD). Emerging evidence suggests that extracellular vesicles (EVs), such as exosomes and microvesicles, transfer pathological tau between cells as vehicles, propagating tau pathology. It is urgently important to find the molecular basis of brain-derived EVs, which may critically regulate EV uptake by neurons and aggregation of tau protein in EVs and/or recipient neurons.
We have recently established the method for isolating EVs from human brain samples and successfully performed their proteomic profiling. We found that selective molecules from the EV proteomics datasets were able to differentiate human AD-EV from healthy control (CTRL)-EV with 88% accuracy by machine learning analysis, confirming the pathogenic character of AD-EV molecules. Furthermore, our exciting preliminary data have shown that AD-EV have significantly higher tau seeding activity compared to CTRL-EV by FRET sensor tau seeding assay, with subsets of EV molecules showing significant association with tau seeding activity.
This proposed project will fortify these preliminary results and find the converging or specific mechanisms among tauopathies for mediating tau aggregation and its seeding via EV uptake through proteomics and biological examination of brain-derived EV samples. To meet this challenge, we assembled a multi-disciplinary team of investigators who have a strong record of accomplishments in biologic (Ikezu), proteomic (Emili), and bioengineering and bioinformatic analysis (Issador).
In Aim 1, we will examine EV samples from 240 new brain specimens (40 AD, 40 CTE, 40 LBD, 40 PSP, 40 CBD, and 40 CTRL) for precision mass-spectrometry-based proteomics and tau-interactomes, and analyze those datasets by the machine learning approach. Aim 2 will examine the efficiency of tau propagation using tau fibrils, oligomers, and EVs isolated from the same donors of the 5 different tauopathies and control cases in vitro and in vivo using FRET-based tau seeding assay and EV uptake by primary cultured mouse cortical neurons in vitro. EV-associated tau will be further characterized by the biochemical and microscopy-based analysis for their conformational and posttranslational changes. We will evaluate the difference in tau propagation after the intracranial injection of the tau seeds from different tauopathy brains using our recently established mouse models.
Aim 3 will identify candidate molecules most likely involved in EV uptake and tau seeding activity by bioinformatic analysis of the proteome dataset (Aim 1) and biological datasets (Aim 2). We will then test the functional roles of the identified molecules on EV uptake, tau seeding activities, and neuronal firing activities in vitro. The candidate molecules will be specifically targeted by gene silencing or antagonists for their therapeutic potential to halt tau propagation in vitro and in vivo. Successful identification of responsible molecules for tau propagation will serve as a foundation for understanding EV-mediated disease progression.
Funding Goals
TO ENCOURAGE BIOMEDICAL, SOCIAL, AND BEHAVIORAL RESEARCH AND RESEARCH TRAINING DIRECTED TOWARD GREATER UNDERSTANDING OF THE AGING PROCESS AND THE DISEASES, SPECIAL PROBLEMS, AND NEEDS OF PEOPLE AS THEY AGE. THE NATIONAL INSTITUTE ON AGING HAS ESTABLISHED PROGRAMS TO PURSUE THESE GOALS. THE DIVISION OF AGING BIOLOGY EMPHASIZES UNDERSTANDING THE BASIC BIOLOGICAL PROCESSES OF AGING. THE DIVISION OF GERIATRICS AND CLINICAL GERONTOLOGY SUPPORTS RESEARCH TO IMPROVE THE ABILITIES OF HEALTH CARE PRACTITIONERS TO RESPOND TO THE DISEASES AND OTHER CLINICAL PROBLEMS OF OLDER PEOPLE. THE DIVISION OF BEHAVIORAL AND SOCIAL RESEARCH SUPPORTS RESEARCH THAT WILL LEAD TO GREATER UNDERSTANDING OF THE SOCIAL, CULTURAL, ECONOMIC AND PSYCHOLOGICAL FACTORS THAT AFFECT BOTH THE PROCESS OF GROWING OLD AND THE PLACE OF OLDER PEOPLE IN SOCIETY. THE DIVISION OF NEUROSCIENCE FOSTERS RESEARCH CONCERNED WITH THE AGE-RELATED CHANGES IN THE NERVOUS SYSTEM AS WELL AS THE RELATED SENSORY, PERCEPTUAL, AND COGNITIVE PROCESSES ASSOCIATED WITH AGING AND HAS A SPECIAL EMPHASIS ON ALZHEIMER'S DISEASE. SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM: TO EXPAND AND IMPROVE THE SBIR PROGRAM, TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, TO INCREASE SMALL BUSINESS PARTICIPATION IN FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION. SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAM: TO STIMULATE AND FOSTER SCIENTIFIC AND TECHNOLOGICAL INNOVATION THROUGH COOPERATIVE RESEARCH DEVELOPMENT CARRIED OUT BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO FOSTER TECHNOLOGY TRANSFER BETWEEN SMALL BUSINESS CONCERNS AND RESEARCH INSTITUTIONS, TO INCREASE PRIVATE SECTOR COMMERCIALIZATION OF INNOVATIONS DERIVED FROM FEDERAL RESEARCH AND DEVELOPMENT, AND TO FOSTER AND ENCOURAGE PARTICIPATION OF SOCIALLY AND ECONOMICALLY DISADVANTAGED SMALL BUSINESS CONCERNS AND WOMEN-OWNED SMALL BUSINESS CONCERNS IN TECHNOLOGICAL INNOVATION.
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Jacksonville,
Florida
322241865
United States
Geographic Scope
Single Zip Code
Related Opportunity
Analysis Notes
Amendment Since initial award the total obligations have increased 389% from $625,498 to $3,058,838.
Mayo Clinic Jacksonville (A Nonprofit Corporation) was awarded
Tau Spread via EVs: Molecular Characterization
Project Grant R01AG067763
worth $3,058,838
from National Institute on Aging in May 2021 with work to be completed primarily in Jacksonville Florida United States.
The grant
has a duration of 5 years and
was awarded through assistance program 93.866 Aging Research.
The Project Grant was awarded through grant opportunity Research Project Grant (Parent R01 Clinical Trial Not Allowed).
Status
(Ongoing)
Last Modified 6/20/25
Period of Performance
5/15/21
Start Date
4/30/26
End Date
Funding Split
$3.1M
Federal Obligation
$0.0
Non-Federal Obligation
$3.1M
Total Obligated
Activity Timeline
Subgrant Awards
Disclosed subgrants for R01AG067763
Transaction History
Modifications to R01AG067763
Additional Detail
Award ID FAIN
R01AG067763
SAI Number
R01AG067763-429338689
Award ID URI
SAI UNAVAILABLE
Awardee Classifications
Nonprofit With 501(c)(3) IRS Status (Other Than An Institution Of Higher Education)
Awarding Office
75NN00 NIH National Insitute on Aging
Funding Office
75NN00 NIH National Insitute on Aging
Awardee UEI
GKPBCFV1QMM3
Awardee CAGE
01JF4
Performance District
FL-05
Senators
Marco Rubio
Rick Scott
Rick Scott
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
National Institute on Aging, National Institutes of Health, Health and Human Services (075-0843) | Health research and training | Grants, subsidies, and contributions (41.0) | $1,222,784 | 100% |
Modified: 6/20/25