Search Prime Grants


Project Grant


Grant Description
Multiphysics motor design software package using MFEM.
Place of Performance
Huntsville, Alabama 35805-6410 United States
Geographic Scope
Single Zip Code
Ierus Technologies was awarded Project Grant DESC0023580 worth $200,000 from the Office of Science in February 2023 with work to be completed primarily in Huntsville Alabama United States. The grant has a duration of 9 months and was awarded through assistance program 81.049 Office of Science Financial Assistance Program. The Project Grant was awarded through grant opportunity FY2023 Phase I Release 1.

SBIR Details

Research Type
SBIR Phase I
Multiphysics Motor Design Software Package Using MFEM
C55-01b-270447-AbstractAs device designs become more complex and incorporate new, advanced technologies and materials, accurate simulations of multi-physics phenomenology become critical to ensuring that such design and analysis efforts are successful. The diversity of problems of interest to the Department of Energy (DOE) and wider audiences includes examples such as electric motor/generator design with reduced rare-earth content, advanced materials, and next-generation devices for 5G wireless communications. Developing advanced computational physics solvers, particular multi-physics and large-scale electromagnetic (EM) software, is critical to solving these challenges in an accurate and timely manner. These advanced capabilities must also be augmented with modern high-performance computing (HPC) enabled software, all while improving user accessibility. Current multi-physics, EM, and HPC software like DOE’s MFEM require substantial expertise across multiple disciplines to be used effectively. MFEM, part of DOE-funded ASCR, is a modular finite element (FE) programming framework developed for a unique audience of expert-level scientists and engineers with programming background. In order to expand the accessibility of this great DOE resource, this project focuses on incorporating MFEM into an existing software product, enabling scientists and engineers without computational programming expertise the opportunity to leverage MFEM in a user-friendly capacity. Overall, this combination of technologies will make HPC-enabled simulations more accessible to non-expert users and democratize EM and multi-physics simulation capability all while increasing addressable problem size through HPC use. Previously, several MFEM prototype modules were developed including electrostatics for ion traps, magnetostatics for motors, electrodynamics for antennas and microwave devices, and magneto-thermal simulation for Joule heating. An HPC demonstration was performed on large-scale ion traps using up to 246 computational nodes. During the Phase I, MFEM will be formally integrated into a commercial multiphysics software product with an initial target application for motor design. Extensions to the software will include MFEM-enabled multiphysics software architecture, nonlinear materials, circuit effects, and thermodynamics. The long-term goal, initiated by the work of this Phase I program, is to provide users with multiple software products built upon a powerful HPC-enabled finite element modeling capability. The team envisions multiple new modular multiphysics capabilities built upon existing software. After maturation and commercial release during Phase II, the team will improve the services offered to customers through a design-as-a-service model, for which the team will leverage the software abstractions, HPC capability, and robust optimization to provide automated device design services.
Topic Code
Solicitation Number


Last Modified 2/27/23

Period of Performance
Start Date
End Date
100% Complete

Funding Split
Federal Obligation
Non-Federal Obligation
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to DESC0023580

Additional Detail

SAI Number
Award ID URI
Awardee Classifications
Small Business
Awarding Office
Funding Office
892401 SCIENCE
Awardee UEI
Awardee CAGE
Performance District
Not Applicable

Budget Funding

Federal Account Budget Subfunction Object Class Total Percentage
Science, Energy Programs, Energy (089-0222) General science and basic research Grants, subsidies, and contributions (41.0) $200,000 100%
Modified: 2/27/23