Search Prime Grants


Project Grant


Grant Description
Sensors for gravity and exotic forces based on single electron transistors (SET).
Place of Performance
San Carlos, California 94070-6276 United States
Geographic Scope
Single Zip Code
Related Opportunity
Analysis Notes
Amendment Since initial award the End Date has been extended from 03/27/22 to 02/28/23.
Equal1.Labs was awarded Project Grant DESC0021732 worth $200,000 from the Office of Science in June 2021 with work to be completed primarily in San Carlos California United States. The grant has a duration of 1 year 8 months and was awarded through assistance program 81.049 Office of Science Financial Assistance Program.

SBIR Details

Research Type
SBIR Phase I
Sensors for gravity and exotic forces based on single electron transistors (SET)
This proposed effort intends to advance the state of instrumentation in such a way as to address several needs in the field of high energy physics (HEP), while also developing a technology that is applicable outside of HEP. Development of a next-generation, monolithic CMOS imager sensor (CIS) for collider experiments is the primary focus of the first phase, promising smaller pixels, radiation hardness, less material, and more complex circuitry within the pixel matrix and in the end-of-column logic than is found in current approaches. A secondary goal, which is also of great interest, is to provide a novel path to 4D tracking by combining very fast charge collection (on the order of 10ps) with low-noise and high-bandwidth front-end transistors, which would obviate the need to include an LGAD-like structure via a monolithic or hybrid approach. Additionally, this project will enable the exploration of the possibility to use non-ionizing sensing mechanisms, such as magnetic or quantum surface-acoustic wave (SAW) or capacitive, with this low-noise, fast circuitry to enable searches for short-distance gravity, exotic forces, as well as the study of the behavior of geometrically constrained vacuum. The proposed image sensor will be developed in the GlobalFoundries 22nm full-depletion, silicon-on- insulator (SoI) CMOS technology, which provides several key attributes: sensitivity to single electron signals, extremely high transistor density, ability to operate over a wide temperature range from below 4K to above ambient, incorporation of charge qubits at 4K, radiation tolerance due to device dimensions and SoI, access to an extensive set of diffusion options in the bulk wafer, and high bandwidth and time resolution. Equal1 has extensive experience designing in this CMOS process and has built sophisticated, system-on- chip devices, which can operate at temperatures down to 4K. Equal1 has also modeled, designed, and fabricated systems with hundreds of quantum wells that can act as charge qubits. These qubits can have their potentials modulated to control the location of single electrons. SLAC National Accelerator Laboratory, as subawardee, will collaborate with Equal1 on this research and will actively participate in the R&D efforts through sensor modeling, circuit design, radiation testing, and radiation hardness measurements.
Topic Code
Solicitation Number


Last Modified 4/18/22

Period of Performance
Start Date
End Date
100% Complete

Funding Split
Federal Obligation
Non-Federal Obligation
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to DESC0021732

Transaction History

Modifications to DESC0021732

Additional Detail

SAI Number
Award ID URI
Awardee Classifications
Small Business
Awarding Office
Funding Office
892401 SCIENCE
Awardee UEI
Awardee CAGE
Performance District
Dianne Feinstein
Alejandro Padilla
Eric Swalwell
Modified: 4/18/22