Search Prime Grants

2416101

Project Grant

Overview

Grant Description
Sbir Phase I: Consortium for High Throughput Cubelab by Space Tango -The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is to address some of the most impactful health research questions by using high throughput techniques in the weightless environment of Low Earth Orbit (LEO).

When studying diseases or developing treatments on Earth, cellular models are often used to ?stand in? for humans during the development phase because of the high number of trials that can be performed in a short period of time. The microgravity environment offered in LEO, provides a unique laboratory where some diseases can be studied more efficiently than on the ground.

This project?s technology is being developed to allow for an unprecedented number of samples to be studied in space, and making world-class health research finally achievable by providing the statistical significance that could only be achieved on Earth. The consortium being formed brings us together with a group of world-class researchers in fields such as cancer research and drug delivery.

Beyond potential health impacts, these studies will encourage the small businesses involved to develop products and strategies for the future, both on Earth and in space. This Small Business Innovation Research (SBIR) Phase I project will double the current capacity of a biological platform technology to enable nearly 600 individual samples in one payload.

All samples will be hosted in an environmentally-controlled, sealed system, matching the best incubation conditions available on Earth, and flown in space during this Phase I project for 30 days on the International Space Station (ISS). This high throughput system will allow for numerous start-ups and labs, including collaborators from Notre Dame, the University of San Diego, Mithrilome, Encapsulate, Massachusetts General Hospital, and Mount Sinai Icahn School of Medicine.

These collaborators will fly specialized cells, groups of cells, and nanomaterials to screen for the best candidates in which to target further translational research and commercialization efforts. Enough statistical evidence will be gathered to match the quality of any ground-based study that could be carried out.

The members of the consortium will carry out research related to Rett Syndrome, Alzheimer?s disease, biomanufacturing of health-related products, drug delivery formulations, brain cancer, gastrointestinal cancer therapies, and the heart. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

- Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23515
Awarding / Funding Agency
Place of Performance
Lexington, Kentucky 40505-3726 United States
Geographic Scope
Single Zip Code
Space Tango was awarded Project Grant 2416101 worth $274,939 from National Science Foundation in March 2024 with work to be completed primarily in Lexington Kentucky United States. The grant has a duration of 5 months and was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships. The Project Grant was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase I Programs.

SBIR Details

Research Type
SBIR Phase I
Title
SBIR Phase I: Consortium for High Throughput CubeLab by Space Tango
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is to address some of the most impactful health research questions by using high throughput techniques in the weightless environment of Low Earth Orbit (LEO). When studying diseases or developing treatments on Earth, cellular models are often used to “stand in” for humans during the development phase because of the high number of trials that can be performed in a short period of time. The microgravity environment offered in LEO, provides a unique laboratory where some diseases can be studied more efficiently than on the ground. This project’s technology is being developed to allow for an unprecedented number of samples to be studied in space, and making world-class health research finally achievable by providing the statistical significance that could only be achieved on Earth. The consortium being formed brings us together with a group of world-class researchers in fields such as cancer research and drug delivery. Beyond potential health impacts, these studies will encourage the small businesses involved to develop products and strategies for the future, both on Earth and in space. This Small Business Innovation Research (SBIR) Phase I project will double the current capacity of a biological platform technology to enable nearly 600 individual samples in one payload. All samples will be hosted in an environmentally-controlled, sealed system, matching the best incubation conditions available on Earth, and flown in space during this Phase I project for 30 days on the International Space Station (ISS). This high throughput system will allow for numerous start-ups and labs, including collaborators from Notre Dame, the University of San Diego, Mithrilome, Encapsulate, Massachusetts General Hospital, and Mount Sinai Icahn School of Medicine. These collaborators will fly specialized cells, groups of cells, and nanomaterials to screen for the best candidates in which to target further translational research and commercialization efforts. Enough statistical evidence will be gathered to match the quality of any ground-based study that could be carried out. The members of the consortium will carry out research related to Rett syndrome, Alzheimer’s disease, biomanufacturing of health-related products, drug delivery formulations, brain cancer, gastrointestinal cancer therapies, and the heart. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
SP
Solicitation Number
NSF 23-515

Status
(Complete)

Last Modified 3/5/24

Period of Performance
3/1/24
Start Date
8/31/24
End Date
100% Complete

Funding Split
$274.9K
Federal Obligation
$0.0
Non-Federal Obligation
$274.9K
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to 2416101

Additional Detail

Award ID FAIN
2416101
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
RJLVHVGMNN56
Awardee CAGE
94Z21
Performance District
KY-06
Senators
Mitch McConnell
Rand Paul
Modified: 3/5/24