Search Prime Grants

2337246

Project Grant

Overview

Grant Description
Sbir Phase I: Unlocking the Potential of Mycoremediation: An Integrated Biological Approach to Combatting PFAS Contamination -The broader impact of this Small Business Innovation Research (SBIR) Phase I project lies in its potential to revolutionize soil remediation techniques, addressing the lack of effective treatment options for soils contaminated by per- and polyfluoroalkyl substances (PFAS).

The proposed remediation method utilizes the natural mutualistic relationship between plants and fungi to remediate contaminated sites, offering distinct advantages over traditional methods. This innovation not only preserves site ecology, but also allows for the reuse of remediated soils, distinguishing it from other solutions that have high environmental impact.

By mitigating soil-based sources of PFAS contamination, the project contributes to public health by reducing exposure risks and safeguarding water and agricultural resources. Furthermore, the successful completion of this project will provide compelling evidence for field trials, paving the way for regulatory approval and commercialization.

This advancement has significant economic implications, enhancing the competitiveness of the United States and stakeholders by allowing for the reallocation of resources through cost savings, and addressing pressing environmental concerns. This enhanced approach offers significant promise for furthering scientific knowledge and delivering tangible benefits to society by tackling a crucial environmental issue, yielding far-reaching benefits.

The proposed project focuses on developing a scalable and effective biological remediation method that utilizes synergistic interactions between fungi and plants to degrade and remove PFAS from contaminated environments. The project aims to expand on fungi that are able to efficiently degrade PFAS and evaluate their effectiveness in degrading six specific PFAS compounds recommended by the EPA.

The research expands the understanding of fungal degradation of PFAS by identifying additional defluorinators and characterizing the resulting breakdown products. The impact of several environmental factors on degradation rates will be assessed to understand how site-specific challenges may impact remediation efforts.

Additionally, various delivery methods for microbial inoculation, such as pelleting, soil drenching, and in-furrow application will be evaluated for consistent inoculum application to contaminated sites. Bench trials will assess the efficiency of this approach, combining fungi and hybrid poplars, for PFAS remediation.

This research addresses a critical need for effective PFAS remediation methods, expanding the frontier of scientific knowledge in fungal bioremediation, offering a fresh perspective and innovative approach towards mitigating the impacts of PFAS on our ecosystems. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

- Subawards are planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23515
Awarding / Funding Agency
Place of Performance
Marquette, Michigan 49855-4391 United States
Geographic Scope
Single Zip Code
Myconaut was awarded Project Grant 2337246 worth $275,000 from National Science Foundation in May 2024 with work to be completed primarily in Marquette Michigan United States. The grant has a duration of 1 year and was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships. The Project Grant was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase I Programs.

SBIR Details

Research Type
SBIR Phase I
Title
SBIR Phase I: Unlocking the Potential of Mycoremediation: An Integrated Biological Approach to Combatting PFAS Contamination
Abstract
The broader impact of this Small Business Innovation Research (SBIR) Phase I project lies in its potential to revolutionize soil remediation techniques, addressing the lack of effective treatment options for soils contaminated by per- and polyfluoroalkyl substances (PFAS). The proposed remediation method utilizes the natural mutualistic relationship between plants and fungi to remediate contaminated sites, offering distinct advantages over traditional methods. This innovation not only preserves site ecology, but also allows for the reuse of remediated soils, distinguishing it from other solutions that have high environmental impact. By mitigating soil-based sources of PFAS contamination, the project contributes to public health by reducing exposure risks and safeguarding water and agricultural resources. Furthermore, the successful completion of this project will provide compelling evidence for field trials, paving the way for regulatory approval and commercialization. This advancement has significant economic implications, enhancing the competitiveness of the United States and stakeholders by allowing for the reallocation of resources through cost savings, and addressing pressing environmental concerns. This enhanced approach offers significant promise for furthering scientific knowledge and delivering tangible benefits to society by tackling a crucial environmental issue, yielding far-reaching benefits. The proposed project focuses on developing a scalable and effective biological remediation method that utilizes synergistic interactions between fungi and plants to degrade and remove PFAS from contaminated environments. The project aims to expand on fungi that are able to efficiently degrade PFAS and evaluate their effectiveness in degrading six specific PFAS compounds recommended by the EPA. The research expands the understanding of fungal degradation of PFAS by identifying additional defluorinators and characterizing the resulting breakdown products. The impact of several environmental factors on degradation rates will be assessed to understand how site-specific challenges may impact remediation efforts. Additionally, various delivery methods for microbial inoculation, such as pelleting, soil drenching, and in-furrow application will be evaluated for consistent inoculum application to contaminated sites. Bench trials will assess the efficiency of this approach, combining fungi and hybrid poplars, for PFAS remediation. This research addresses a critical need for effective PFAS remediation methods, expanding the frontier of scientific knowledge in fungal bioremediation, offering a fresh perspective and innovative approach towards mitigating the impacts of PFAS on our ecosystems. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
BT
Solicitation Number
NSF 23-515

Status
(Complete)

Last Modified 5/21/24

Period of Performance
5/15/24
Start Date
4/30/25
End Date
100% Complete

Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to 2337246

Additional Detail

Award ID FAIN
2337246
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
CDA8XJM6F7M5
Awardee CAGE
9C1L5
Performance District
MI-01
Senators
Debbie Stabenow
Gary Peters
Modified: 5/21/24