2335593
Project Grant
Overview
Grant Description
Sbir Phase I: Electromechanical Mass Transfer System for Space Operations -The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project will be to advance a novel electromechanical platform for in-space logistics to facilitate economic development, technical and scientific advancement on the lunar surface, and in other low gravity environments. On other celestial bodies (e.g. Mars), this platform can similarly be utilized to enable early exploration and development with minimal wraparound infrastructure investments.
The subject of the SBIR project is an electromechanical mass transfer system; this will be the first such innovation that enables a cost-effective mass transfer in low gravity environments leveraging centrifugal acceleration. This platform can enable the movement of resources through space without the use of consumable fuels or on-board propulsion systems, unlocking more cost-effective space operations. The successful execution of this project will enable swift TRL raising of the platform.
The comprehensive testing and validation process will demonstrate the capabilities of our technology to potential customers and stakeholders, providing tangible evidence of its reliability, accuracy, and efficiency. The successful development of the platform can provide the mobility required to empower robust exploration, science, and economic development on the surface of the Moon. This platform will be more economical than other alternatives due to its low mass and plug-and-play functionality.
Ultimately, the system aims to provide the cheapest, most comprehensive logistics services that catalyze the promising lunar market. This SBIR Phase I project will address the technical challenges associated with transporting resources across the lunar surface with a novel electromechanical throwing platform. The platform, which utilizes an electromechanical system to throw payloads across the lunar surface, offers an innovative solution for lunar surface logistics and other space-based mobility problems. The goals of the proposed R&D include developing a reliable, accurate, and energy-efficient prototype and demonstrating its feasibility and capabilities on Earth.
Lunar operations are complex and expensive, and with novel technology such as the proposed platform, customers and other stakeholders will be looking for assurances that the platform will be both repeatable and accurate. Wear and tear on the system, varying environmental effects such as variable lunar gravity, and built-in system inaccuracies such as error bands around release angle and velocity can cause a failure that could put customers at risk. The purpose of this effort is to demonstrate with specific hardware improvements that the platform can safely and repeatably deploy assets across the lunar surface.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are not planned for this award.
The subject of the SBIR project is an electromechanical mass transfer system; this will be the first such innovation that enables a cost-effective mass transfer in low gravity environments leveraging centrifugal acceleration. This platform can enable the movement of resources through space without the use of consumable fuels or on-board propulsion systems, unlocking more cost-effective space operations. The successful execution of this project will enable swift TRL raising of the platform.
The comprehensive testing and validation process will demonstrate the capabilities of our technology to potential customers and stakeholders, providing tangible evidence of its reliability, accuracy, and efficiency. The successful development of the platform can provide the mobility required to empower robust exploration, science, and economic development on the surface of the Moon. This platform will be more economical than other alternatives due to its low mass and plug-and-play functionality.
Ultimately, the system aims to provide the cheapest, most comprehensive logistics services that catalyze the promising lunar market. This SBIR Phase I project will address the technical challenges associated with transporting resources across the lunar surface with a novel electromechanical throwing platform. The platform, which utilizes an electromechanical system to throw payloads across the lunar surface, offers an innovative solution for lunar surface logistics and other space-based mobility problems. The goals of the proposed R&D include developing a reliable, accurate, and energy-efficient prototype and demonstrating its feasibility and capabilities on Earth.
Lunar operations are complex and expensive, and with novel technology such as the proposed platform, customers and other stakeholders will be looking for assurances that the platform will be both repeatable and accurate. Wear and tear on the system, varying environmental effects such as variable lunar gravity, and built-in system inaccuracies such as error bands around release angle and velocity can cause a failure that could put customers at risk. The purpose of this effort is to demonstrate with specific hardware improvements that the platform can safely and repeatably deploy assets across the lunar surface.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23515
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Albuquerque,
New Mexico
87106-3217
United States
Geographic Scope
Single Zip Code
Space Kinetic was awarded
Project Grant 2335593
worth $275,000
from National Science Foundation in March 2024 with work to be completed primarily in Albuquerque New Mexico United States.
The grant
has a duration of 1 year and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
The Project Grant was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase I Programs.
SBIR Details
Research Type
SBIR Phase I
Title
SBIR Phase I: Electromechanical Mass Transfer System for Space Operations
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project will be to advance a novel electromechanical platform for in-space logistics to facilitate economic development, technical and scientific advancement on the lunar surface, and in other low gravity environments. On other celestial bodies (e.g. Mars), this platform can similarly be utilized to enable early exploration and development with minimal wraparound infrastructure investments. The subject of the SBIR project is an electromechanical mass transfer system; this will be the first such innovation that enables a cost-effective mass transfer in low gravity environments leveraging centrifugal acceleration. This platform can enable the movement of resources through space without the use of consumable fuels or on-board propulsion systems, unlocking more cost-effective space operations. The successful execution of this project will enable swift TRL raising of the platform. The comprehensive testing and validation process will demonstrate the capabilities of our technology to potential customers and stakeholders, providing tangible evidence of its reliability, accuracy, and efficiency. The successful development of the platform can provide the mobility required to empower robust exploration, science, and economic development on the surface of the Moon. This platform will be more economical than other alternatives due to its low mass and plug-and-play functionality. Ultimately, the system aims to provide the cheapest, most comprehensive logistics services that catalyze the promising lunar market.
This SBIR Phase I Project will address the technical challenges associated with transporting resources across the lunar surface with a novel electromechanical throwing platform. The platform, which utilizes an electromechanical system to throw payloads across the lunar surface, offers an innovative solution for lunar surface logistics and other space-based mobility problems. The goals of the proposed R&D include developing a reliable, accurate, and energy-efficient prototype and demonstrating its feasibility and capabilities on Earth. Lunar operations are complex and expensive, and with novel technology such as the proposed platform, customers and other stakeholders will be looking for assurances that the platform will be both repeatable and accurate. Wear and tear on the system, varying environmental effects such as variable Lunar gravity, and built-in system inaccuracies such as error bands around release angle and velocity can cause a failure that could put customers at risk. The purpose of this effort is to demonstrate with specific hardware improvements that the platform can safely and repeatably deploy assets across the lunar surface.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
SP
Solicitation Number
NSF 23-515
Status
(Complete)
Last Modified 3/21/24
Period of Performance
3/15/24
Start Date
2/28/25
End Date
Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2335593
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
HCULLT3MG9L8
Awardee CAGE
99ET0
Performance District
NM-01
Senators
Martin Heinrich
Ben Luján
Ben Luján
Modified: 3/21/24