2335462
Project Grant
Overview
Grant Description
Sttr Phase I: Ultrasonic Fracture Healing Assessment -The broader impact/commercial potential of this small business technology transfer (STTR) Phase I project is a novel medical device algorithm for assessing the status of bone fracture healing using ultrasound measures. The system aims to provide advantages to current X-ray based paradigms by reducing cost and radiation exposure, and by enabling portability.
An estimated 130 million X-ray procedures are performed in the US each year, at a cost of $16 billion with as much as 25% redone due to quality issues. Furthermore, 2.8 million patients are considered at risk for delayed/non-union fractures. The combined market potential is $1.3B/year as a software solution to ultrasound equipment vendors and $1.4B/year for at home monitoring.
This small business technology transfer (STTR) Phase I project aims to develop the company?s proprietary fracture healing algorithm utilizing ultrasound data. During the first phase the company will acquire, analyze, and compare in-vivo ultrasound, X-ray, and micro-CT data in a lapine model across the healing cycle of surgically induced tibial diaphysis fractures.
The company aims to de-risk their fracture healing to monitor the stage of orthopedic healing versus X-rays with 90% statistical confidence. The risks to be addressed include signal characterization versus noise ratio, back-scattering, and fracture healing classification. The results of the Phase 1 study will provide a working algorithm suitable to begin human feasibility testing.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.- Subawards are planned for this award.
An estimated 130 million X-ray procedures are performed in the US each year, at a cost of $16 billion with as much as 25% redone due to quality issues. Furthermore, 2.8 million patients are considered at risk for delayed/non-union fractures. The combined market potential is $1.3B/year as a software solution to ultrasound equipment vendors and $1.4B/year for at home monitoring.
This small business technology transfer (STTR) Phase I project aims to develop the company?s proprietary fracture healing algorithm utilizing ultrasound data. During the first phase the company will acquire, analyze, and compare in-vivo ultrasound, X-ray, and micro-CT data in a lapine model across the healing cycle of surgically induced tibial diaphysis fractures.
The company aims to de-risk their fracture healing to monitor the stage of orthopedic healing versus X-rays with 90% statistical confidence. The risks to be addressed include signal characterization versus noise ratio, back-scattering, and fracture healing classification. The results of the Phase 1 study will provide a working algorithm suitable to begin human feasibility testing.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.- Subawards are planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23515
Grant Program (CFDA)
Awarding Agency
Place of Performance
Chevy Chase,
Maryland
20815-4950
United States
Geographic Scope
Single Zip Code
Sonogen Medical was awarded
Project Grant 2335462
worth $275,000
from in June 2024 with work to be completed primarily in Chevy Chase Maryland United States.
The grant
has a duration of 1 year and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
The Project Grant was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase I Programs.
SBIR Details
Research Type
STTR Phase I
Title
STTR Phase I: Ultrasonic Fracture Healing Assessment
Abstract
The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase I project is a novel medical device algorithm for assessing the status of bone fracture healing using ultrasound measures. The system aims to provide advantages to current X-ray based paradigms by reducing cost and radiation exposure, and by enabling portability. An estimated 130 million X-Ray procedures are performed in the US each year, at a cost of $16 billion with as much as 25% redone due to quality issues. Furthermore, 2.8 million patients are considered at risk for delayed/non-union fractures. The combined market potential is $1.3B/year as a software solution to ultrasound equipment vendors and $1.4B/year for at home monitoring.
This Small Business Technology Transfer (STTR) Phase I project aims to develop the company’s proprietary fracture healing algorithm utilizing ultrasound data. During the first phase the company will acquire, analyze, and compare in-vivo ultrasound, X-ray, and micro-CT data in a lapine model across the healing cycle of surgically induced tibial diaphysis fractures. The company aims to de-risk their fracture healing to monitor the stage of orthopedic healing versus X-rays with 90% statistical confidence. The risks to be addressed include signal characterization versus noise ratio, back-scattering, and fracture healing classification. The results of the Phase 1 study will provide a working algorithm suitable to begin human feasibility testing.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
MD
Solicitation Number
NSF 23-515
Status
(Complete)
Last Modified 10/17/24
Period of Performance
6/1/24
Start Date
5/31/25
End Date
Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
Activity Timeline
Transaction History
Modifications to 2335462
Additional Detail
Award ID FAIN
2335462
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
C1VNUATW8XL7
Awardee CAGE
9AFG8
Performance District
MD-08
Senators
Benjamin Cardin
Chris Van Hollen
Chris Van Hollen
Modified: 10/17/24