2335248
Project Grant
Overview
Grant Description
Sbir Phase I: Contact Lens for Assisting Color Vision Deficiency -The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is a novel biocompatible dye integrated into contact lenses for improving color recognition in people with various forms of color blindness. The technology aims to improve color recognition in patients with color vision deficiency (CVD), due to either hereditary (11.3 million anomalous trichromats) or acquired (33 million retinopathies and maculopathy affecting color vision) causes.
Common reasons include macular degeneration, type II diabetes retinopathy, and glaucoma. Classroom information is also nearly 80% color-coded, and the technology poses a more equitable learning environment for color vision deficient students who wear contact lenses and in a less externally obvious manner. The system thus poses the potential impact of improving learning, task performance, and quality of life as demonstrated through spectrally identical external eyewear studies for contact lens wearers.
The total addressable domestic market exceeds 5 million patients with over 1 million patients suffering from hereditary causes and 4 million from acquired color deficiencies, resulting in an annual market of up to $326 million. This Small Business Innovation Research Phase I project aims to embed narrow-band hydrophobic dyes into polyvinyl alcohol (PVA), a primary hydrophilic contact lens (CL) hydrogel, to create a contact lens that offers color vision deficiency assistance.
Narrow-band absorber dyes provide spectral shaping, modifying light reaching the eye. The technical hurdles to be addressed is developing a fabrication method which ensures the dyes and PVA are embedded into a stable format such that they do not leach out during prolonged submersion and wear. A novel chemical process that combines dyes into a common solvent, when combined with the PVA-water solution will be integrated into a contact lens such that it permeates and impermeates the porous substrate without precipitating.
Upon curing and cross-linking, this embeds less than a microgram of hydrophobic narrow-band dyes to create a thin and stable lens layer. The effects will quantified using optical spectroscopy and mass spectrometry to provide a basis for a human grade contact lens. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.- Subawards are not planned for this award.
Common reasons include macular degeneration, type II diabetes retinopathy, and glaucoma. Classroom information is also nearly 80% color-coded, and the technology poses a more equitable learning environment for color vision deficient students who wear contact lenses and in a less externally obvious manner. The system thus poses the potential impact of improving learning, task performance, and quality of life as demonstrated through spectrally identical external eyewear studies for contact lens wearers.
The total addressable domestic market exceeds 5 million patients with over 1 million patients suffering from hereditary causes and 4 million from acquired color deficiencies, resulting in an annual market of up to $326 million. This Small Business Innovation Research Phase I project aims to embed narrow-band hydrophobic dyes into polyvinyl alcohol (PVA), a primary hydrophilic contact lens (CL) hydrogel, to create a contact lens that offers color vision deficiency assistance.
Narrow-band absorber dyes provide spectral shaping, modifying light reaching the eye. The technical hurdles to be addressed is developing a fabrication method which ensures the dyes and PVA are embedded into a stable format such that they do not leach out during prolonged submersion and wear. A novel chemical process that combines dyes into a common solvent, when combined with the PVA-water solution will be integrated into a contact lens such that it permeates and impermeates the porous substrate without precipitating.
Upon curing and cross-linking, this embeds less than a microgram of hydrophobic narrow-band dyes to create a thin and stable lens layer. The effects will quantified using optical spectroscopy and mass spectrometry to provide a basis for a human grade contact lens. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.- Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23515
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Berkeley,
California
94710-2592
United States
Geographic Scope
Single Zip Code
Enchroma was awarded
Project Grant 2335248
worth $275,000
from National Science Foundation in May 2024 with work to be completed primarily in Berkeley California United States.
The grant
has a duration of 1 year and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
The Project Grant was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase I Programs.
SBIR Details
Research Type
SBIR Phase I
Title
SBIR Phase I: Contact lens for assisting color vision deficiency
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is a novel biocompatible dye integrated into contact lenses for improving color recognition in people with various forms of color blindness. The technology aims to improve color recognition in patients with color vision deficiency (CVD), due to either hereditary (11.3 million anomalous trichromats) or acquired (33 million retinopathies and maculopathy affecting color vision) causes. Common reasons include macular degeneration, Type II diabetes retinopathy, and glaucoma. Classroom information is also nearly 80% color-coded, and the technology poses a more equitable learning environment for color vision deficient students who wear contact lenses and in a less externally obvious manner. The system thus poses the potential impact of improving learning, task performance, and quality of life as demonstrated through spectrally identical external eyewear studies for contact lens wearers. The total addressable domestic market exceeds 5 million patients with over 1 million patients suffering from hereditary causes and 4 million from acquired color deficiencies, resulting in an annual market of up to $326 million.
This Small Business Innovation Research Phase I project aims to embed narrow-band hydrophobic dyes into polyvinyl alcohol (PVA), a primary hydrophilic contact lens (CL) hydrogel, to create a contact lens that offers color vision deficiency assistance. Narrow-band absorber dyes provide spectral shaping, modifying light reaching the eye. The technical hurdles to be addressed is developing a fabrication method which ensures the dyes and PVA are embedded into a stable format such that they do not leach out during prolonged submersion and wear. A novel chemical process that combines dyes into a common solvent, when combined with the PVA-water solution will be integrated into a contact lens such that it permeates and impermeates the porous substrate without precipitating. Upon curing and cross-linking, this embeds less than a microgram of hydrophobic narrow-band dyes to create a thin and stable lens layer. The effects will quantified using optical spectroscopy and mass spectrometry to provide a basis for a human grade contact lens.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
MD
Solicitation Number
NSF 23-515
Status
(Complete)
Last Modified 5/6/24
Period of Performance
5/1/24
Start Date
4/30/25
End Date
Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2335248
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
KG3XWNC4DLW5
Awardee CAGE
634Y2
Performance District
CA-12
Senators
Dianne Feinstein
Alejandro Padilla
Alejandro Padilla
Modified: 5/6/24