2335156
Project Grant
Overview
Grant Description
Sbir Phase I: Universal Electric Propulsion System Gridded Hall Thruster for Satellite Life Extension and Space Debris Removal -The broader impact/commercial potential of this Phase I Small Business Innovation Research (SBIR) project has far-reaching impacts that benefit the global community by offering crucial solutions to uncertain challenges encountered in space, both in Earth's orbits and deep space. The successful outcome of the project is an innovative electric propulsion (EP) system which will be a foundation for on-orbit servicing systems.
The new EP technology will directly benefit satellite operators by potentially extending the operational lifespan of their satellite fleet with its high propellant utilization capability. It will also offer solutions for safely removing end-of-life space objects from orbit by utilizing its high thrust capabilities for de-orbiting. Furthermore, the innovative EP system opens opportunities for deep space applications, such as deflecting asteroids, which were previously only achievable using high-impulse systems like the Gridded Ion Thruster (GIT).
Overall, the new EP system holds immense potential for commercial and scientific advancements in the space industry. This SBIR Phase I project proposes to demonstrate the concept and feasibility for an innovative EP system that enables various on-orbit service activities. The project aims to combine two distinct electric propulsion technologies, namely the GIT and the Hall Thruster (HT), into a single ion thruster known as the Gridded Hall Thruster (GHT).
This integration will involve specific performance measurements and characterizations to evaluate the success of this novel combination. The GHT addresses the limitations associated with individual technologies. It overcomes the low thrust limitation of GIT and the low specific impulse of HT, as well as mitigates the inherent process instabilities like the ionization-induced instability found in HT. By doing so, the GHT achieves optimal performance and extends its usable lifetime.
Additionally, the GHT offers another potential significant benefit. It enables neutralizer-free electron generation, which simplifies the ion thruster architecture and improves overall efficiency. This advancement in electron generation represents a simpler and more streamlined approach to ion thruster design. The successful completion of this project will contribute significantly to the advancement of electric propulsion technology and pave the way for critical applications in on-orbit servicing in space.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are not planned for this award.
The new EP technology will directly benefit satellite operators by potentially extending the operational lifespan of their satellite fleet with its high propellant utilization capability. It will also offer solutions for safely removing end-of-life space objects from orbit by utilizing its high thrust capabilities for de-orbiting. Furthermore, the innovative EP system opens opportunities for deep space applications, such as deflecting asteroids, which were previously only achievable using high-impulse systems like the Gridded Ion Thruster (GIT).
Overall, the new EP system holds immense potential for commercial and scientific advancements in the space industry. This SBIR Phase I project proposes to demonstrate the concept and feasibility for an innovative EP system that enables various on-orbit service activities. The project aims to combine two distinct electric propulsion technologies, namely the GIT and the Hall Thruster (HT), into a single ion thruster known as the Gridded Hall Thruster (GHT).
This integration will involve specific performance measurements and characterizations to evaluate the success of this novel combination. The GHT addresses the limitations associated with individual technologies. It overcomes the low thrust limitation of GIT and the low specific impulse of HT, as well as mitigates the inherent process instabilities like the ionization-induced instability found in HT. By doing so, the GHT achieves optimal performance and extends its usable lifetime.
Additionally, the GHT offers another potential significant benefit. It enables neutralizer-free electron generation, which simplifies the ion thruster architecture and improves overall efficiency. This advancement in electron generation represents a simpler and more streamlined approach to ion thruster design. The successful completion of this project will contribute significantly to the advancement of electric propulsion technology and pave the way for critical applications in on-orbit servicing in space.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23515
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Redwood City,
California
94063-3479
United States
Geographic Scope
Single Zip Code
Related Opportunity
Analysis Notes
Amendment Since initial award the End Date has been extended from 02/28/25 to 05/31/25 and the total obligations have increased 7% from $274,958 to $294,958.
Forchun was awarded
Project Grant 2335156
worth $294,958
from National Science Foundation in July 2024 with work to be completed primarily in Redwood City California United States.
The grant
has a duration of 10 months and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
The Project Grant was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase I Programs.
SBIR Details
Research Type
SBIR Phase I
Title
SBIR Phase I: Universal Electric Propulsion System Gridded Hall Thruster For Satellite Life Extension And Space Debris Removal
Abstract
The broader impact/commercial potential of this Phase I Small Business Innovation Research (SBIR) project has far-reaching impacts that benefit the global community by offering crucial solutions to uncertain challenges encountered in space, both in Earth's orbits and deep space. The successful outcome of the project is an innovative electric propulsion (EP) system which will be a foundation for on-orbit servicing systems. The new EP technology will directly benefit satellite operators by potentially extending the operational lifespan of their satellite fleet with its high propellant utilization capability. It will also offer solutions for safely removing end-of-life space objects from orbit by utilizing its high thrust capabilities for de-orbiting. Furthermore, the innovative EP system opens opportunities for deep space applications, such as deflecting asteroids, which were previously only achievable using high-impulse systems like the gridded ion thruster (GIT). Overall, the new EP system holds immense potential for commercial and scientific advancements in the space industry.
This SBIR Phase I project proposes to demonstrate the concept and feasibility for an innovative EP system that enables various on-orbit service activities. The project aims to combine two distinct electric propulsion technologies, namely the GIT and the Hall thruster (HT), into a single ion thruster known as the Gridded Hall thruster (GHT). This integration will involve specific performance measurements and characterizations to evaluate the success of this novel combination. The GHT addresses the limitations associated with individual technologies. It overcomes the low thrust limitation of GIT and the low specific impulse of HT, as well as mitigates the inherent process instabilities like the ionization-induced instability found in HT. By doing so, the GHT achieves optimal performance and extends its usable lifetime. Additionally, the GHT offers another potential significant benefit. It enables neutralizer-free electron generation, which simplifies the ion thruster architecture and improves overall efficiency. This advancement in electron generation represents a simpler and more streamlined approach to ion thruster design. The successful completion of this project will contribute significantly to the advancement of electric propulsion technology and pave the way for critical applications in on-orbit servicing in space.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
SP
Solicitation Number
NSF 23-515
Status
(Complete)
Last Modified 4/4/25
Period of Performance
7/1/24
Start Date
5/31/25
End Date
Funding Split
$295.0K
Federal Obligation
$0.0
Non-Federal Obligation
$295.0K
Total Obligated
Activity Timeline
Transaction History
Modifications to 2335156
Additional Detail
Award ID FAIN
2335156
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
E3K9UJALQDN5
Awardee CAGE
9G4X3
Performance District
CA-15
Senators
Dianne Feinstein
Alejandro Padilla
Alejandro Padilla
Modified: 4/4/25