2334278
Project Grant
Overview
Grant Description
Sbir Phase I: Cluegen: A Fungi-Focused Metabologenomics Platform for Natural Product Discovery -The broader impact of this Small Business Innovation Research (SBIR) Phase I project will be on addressing current global problems concerning disease, pollution and climate change through the development of a new biological technology platform powered by fungi.
Many natural product chemicals with broad potential uses have been discovered through traditional bioprospecting methods. However, the Achilles heel for commercial development of products based on these discoveries is that many of the compounds are difficult, expensive, or impossible to produce at scale.
Further, many potent biochemicals are not typically produced under laboratory conditions, and therefore remain concealed within their host genomes. By associating known and new commercially-relevant metabolites with the genes responsible for their synthesis, this platform will open new opportunities for accessing the powerful chemistry found in fungi through modern synthetic biology and genomics.
The proposed project will enable discovery of biosynthetic gene clusters (BGCs) encoding bioactive metabolites from a large private collection of ascomycetes. The mature platform will contain thousands of annotated genome sequences from this large group of relatively unstudied fungi that have high potential for producing new drugs and crop protection molecules, in addition to uncovering enzymes that can be applied to multiple industries.
A set of specific targets encompassing anti-cancer molecules, insecticides, antibiotics, and novel enzymes will be used as validation guides on the route to fully developing the resources needed for novel discovery. The goals for this project are to fully annotate BGCs from 200 genomes selected from a diverse set of bioactive fungi, and design at least 15 heterologous expression constructs encoding verticillins, antimicrobials, and insecticidal compounds for a Phase 2 project.
Additionally, it is anticipated that over 100 valuable enzyme candidates will be discovered for immediate value creation with customer-partners. Together, successful completion of this project will validate the tools needed for application of the platform to the remaining ~50,000 strains in the fungal library, and drive the investment needed to launch the company.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are not planned for this award.
Many natural product chemicals with broad potential uses have been discovered through traditional bioprospecting methods. However, the Achilles heel for commercial development of products based on these discoveries is that many of the compounds are difficult, expensive, or impossible to produce at scale.
Further, many potent biochemicals are not typically produced under laboratory conditions, and therefore remain concealed within their host genomes. By associating known and new commercially-relevant metabolites with the genes responsible for their synthesis, this platform will open new opportunities for accessing the powerful chemistry found in fungi through modern synthetic biology and genomics.
The proposed project will enable discovery of biosynthetic gene clusters (BGCs) encoding bioactive metabolites from a large private collection of ascomycetes. The mature platform will contain thousands of annotated genome sequences from this large group of relatively unstudied fungi that have high potential for producing new drugs and crop protection molecules, in addition to uncovering enzymes that can be applied to multiple industries.
A set of specific targets encompassing anti-cancer molecules, insecticides, antibiotics, and novel enzymes will be used as validation guides on the route to fully developing the resources needed for novel discovery. The goals for this project are to fully annotate BGCs from 200 genomes selected from a diverse set of bioactive fungi, and design at least 15 heterologous expression constructs encoding verticillins, antimicrobials, and insecticidal compounds for a Phase 2 project.
Additionally, it is anticipated that over 100 valuable enzyme candidates will be discovered for immediate value creation with customer-partners. Together, successful completion of this project will validate the tools needed for application of the platform to the remaining ~50,000 strains in the fungal library, and drive the investment needed to launch the company.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23515
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Hillsborough,
North Carolina
27278-8678
United States
Geographic Scope
Single Zip Code
Clue Genetics was awarded
Project Grant 2334278
worth $275,000
from National Science Foundation in May 2024 with work to be completed primarily in Hillsborough North Carolina United States.
The grant
has a duration of 1 year and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
The Project Grant was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase I Programs.
SBIR Details
Research Type
SBIR Phase I
Title
SBIR Phase I: ClueGen: a fungi-focused metabologenomics platform for natural product discovery
Abstract
The broader impact of this Small Business Innovation Research (SBIR) Phase I project will be on addressing current global problems concerning disease, pollution and climate change through the development of a new biological technology platform powered by fungi. Many natural product chemicals with broad potential uses have been discovered through traditional bioprospecting methods. However, the Achilles heel for commercial development of products based on these discoveries is that many of the compounds are difficult, expensive, or impossible to produce at scale. Further, many potent biochemicals are not typically produced under laboratory conditions, and therefore remain concealed within their host genomes. By associating known and new commercially-relevant metabolites with the genes responsible for their synthesis, this platform will open new opportunities for accessing the powerful chemistry found in fungi through modern synthetic biology and genomics.
The proposed project will enable discovery of biosynthetic gene clusters (BGCs) encoding bioactive metabolites from a large private collection of Ascomycetes. The mature platform will contain thousands of annotated genome sequences from this large group of relatively unstudied fungi that have high potential for producing new drugs and crop protection molecules, in addition to uncovering enzymes that can be applied to multiple industries. A set of specific targets encompassing anti-cancer molecules, insecticides, antibiotics, and novel enzymes will be used as validation guides on the route to fully developing the resources needed for novel discovery. The goals for this project are to fully annotate BGCs from 200 genomes selected from a diverse set of bioactive fungi, and design at least 15 heterologous expression constructs encoding verticillins, antimicrobials, and insecticidal compounds for a Phase 2 project. Additionally, it is anticipated that over 100 valuable enzyme candidates will be discovered for immediate value creation with customer-partners. Together, successful completion of this project will validate the tools needed for application of the platform to the remaining ~50,000 strains in the fungal library, and drive the investment needed to launch the company.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
PT
Solicitation Number
NSF 23-515
Status
(Complete)
Last Modified 5/6/24
Period of Performance
5/1/24
Start Date
4/30/25
End Date
Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2334278
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
JAVQBRCDUDT4
Awardee CAGE
89KF1
Performance District
NC-04
Senators
Thom Tillis
Ted Budd
Ted Budd
Modified: 5/6/24