Search Prime Grants

2334168

Project Grant

Overview

Grant Description
Sbir Phase I: Anti-Infective Foley Catheters for Long-Term Prevention of Catheter-Associated Urinary Tract Infections -The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is a novel anti-infective coating to mitigate catheter-associated urinary tract infections (CAUTIs). These infections often lead to severe complications, resulting in an estimated 13,000 annual deaths while incurring nearly $6.2 billion in direct and indirect U.S. healthcare system costs.

The hybrid catheter technology aims to provide continuous protection against infections caused by biofilms, offering chronic antimicrobial and biofilm-repelling properties through a synergistic combination of biofilm-repelling and static antimicrobial surface moieties. The proposed catheter technology aims to demonstrate significant decreases in infection rates, improved catheter longevity, and broad-spectrum protection against pathogens to reduce the risks of infection associated with long-term catheter use, reducing the reliance of patients on antibiotics.

The scope of this technology's application has broader potential beyond urinary catheters to include other catheter-based applications and acute in-hospital use medical devices. The overall technological objectives are to improve infection control practices and risk reduction for many common U.S. in-hospital procedures.

This Small Business Innovation Research (SBIR) Phase I project aims to develop a novel device surface coating with enhanced anti-pathogen and biofilm resistance. The objective is to develop and validate in vitro an innovative catheter design that offers prolonged resistance to biofilm formation, superior to current single modality approaches. During this Phase 1 project, the anti-biofilm properties of zwitterionic moieties will be combined with the durable static microbicidal action of a gemini-dicationic moieties into a single coating.

Initial bench tests at the materials level demonstrate a significant reduction in biofilm formation superior to currently available methods. Invitro testing will be completed on the novel combined mode material to demonstrate reduced infection risks relative to existing antimicrobial Foley catheters. The proprietary material will then be integrated into manufacturing processes to prevent infection in catheter-use medical settings.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23515
Awarding / Funding Agency
Place of Performance
Vista, California 92081-8504 United States
Geographic Scope
Single Zip Code
Acatechol was awarded Project Grant 2334168 worth $274,982 from National Science Foundation in March 2024 with work to be completed primarily in Vista California United States. The grant has a duration of 1 year and was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships. The Project Grant was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase I Programs.

SBIR Details

Research Type
SBIR Phase I
Title
SBIR Phase I: Anti-infective Foley catheters for long-term prevention of catheter-associated urinary tract infections
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is a novel anti-infective coating to mitigate catheter-associated urinary tract infections (CAUTIs). These infections often lead to severe complications, resulting in an estimated 13,000 annual deaths while incurring nearly $6.2 billion in direct and indirect U.S. healthcare system costs. The hybrid catheter technology aims to provide continuous protection against infections caused by biofilms, offering chronic antimicrobial and biofilm-repelling properties through a synergistic combination of biofilm-repelling and static antimicrobial surface moieties. The proposed catheter technology aims to demonstrate significant decreases in infection rates, improved catheter longevity, and broad-spectrum protection against pathogens to reduce the risks of infection associated with long-term catheter use, reducing the reliance of patients on antibiotics. The scope of this technology's application has broader potential beyond urinary catheters to include other catheter-based applications and acute in-hospital use medical devices. The overall technological objectives are to improve infection control practices and risk reduction for many common U.S. in-hospital procedures. This Small Business Innovation Research (SBIR) Phase I project aims to develop a novel device surface coating with enhanced anti-pathogen and biofilm resistance. The objective is to develop and validate in vitro an innovative catheter design that offers prolonged resistance to biofilm formation, superior to current single modality approaches. During this Phase 1 project, the anti-biofilm properties of zwitterionic moieties will be combined with the durable static microbicidal action of a Gemini-dicationic moieties into a single coating. Initial bench tests at the materials level demonstrate a significant reduction in biofilm formation superior to currently available methods. Invitro testing will be completed on the novel combined mode material to demonstrate reduced infection risks relative to existing antimicrobial Foley catheters. The proprietary material will then be integrated into manufacturing processes to prevent infection in catheter-use medical settings. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
MD
Solicitation Number
NSF 23-515

Status
(Complete)

Last Modified 3/5/24

Period of Performance
3/1/24
Start Date
2/28/25
End Date
100% Complete

Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to 2334168

Additional Detail

Award ID FAIN
2334168
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
H1J2E88TYBN5
Awardee CAGE
8GF98
Performance District
CA-49
Senators
Dianne Feinstein
Alejandro Padilla
Modified: 3/5/24