2326861
Project Grant
Overview
Grant Description
SBIR Phase I: CAS: Advanced Thermal Oxidizer to Cost-Effectively Control Greenhouse Emissions from Small Sources -This Small Business Innovation Research (SBIR) Phase I project seeks to reduce air pollution, specifically emissions of the greenhouse gas methane, toxic/carcinogenic organic compounds, and odors. Reduction in these emissions serves the public interest by improving human health, well-being, and the environment and is in alignment with NSF's mission to promote innovative unproven technologies that can benefit society.
These emission reductions will be accomplished through the development of a new type of air pollution control technology that can be cost-effectively applied to small emission sources that cannot be effectively controlled using existing technologies. These small emission sources are numerous, and in some cases, located near sensitive or overburdened communities, so the emissions control will have a large impact. The improved cost effectiveness and simplicity of this technology should reduce increasingly more stringent regulatory compliance costs, freeing up both human and capital resources for productive use in other areas.
This SBIR project will support research and development (R&D) into an air pollution control technology for combustible gases that uses a novel, patent-pending, continuous heat regeneration system to enable re-use of thermal energy in a thermal oxidizer. The effort will focus on investigating the fundamental heat transfer, fluid dynamics, and material science of the invention as well as construction and testing of full-scale prototypes to increase the durability and reduce the performance risk.
This continuous, regenerative, thermal oxidizer system is unlike any existing pollution control technology and will enable a significant reduction in size and complexity compared to conventional technologies. The system will be mass-produced, unlike existing systems that are custom built. The combination of reduced size, reduced complexity, and mass-production should result in a large reduction in cost. The new system has other advantages such as reduced warm-up time, greater flexibility in applications, and greater safety. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are not planned for this award.
These emission reductions will be accomplished through the development of a new type of air pollution control technology that can be cost-effectively applied to small emission sources that cannot be effectively controlled using existing technologies. These small emission sources are numerous, and in some cases, located near sensitive or overburdened communities, so the emissions control will have a large impact. The improved cost effectiveness and simplicity of this technology should reduce increasingly more stringent regulatory compliance costs, freeing up both human and capital resources for productive use in other areas.
This SBIR project will support research and development (R&D) into an air pollution control technology for combustible gases that uses a novel, patent-pending, continuous heat regeneration system to enable re-use of thermal energy in a thermal oxidizer. The effort will focus on investigating the fundamental heat transfer, fluid dynamics, and material science of the invention as well as construction and testing of full-scale prototypes to increase the durability and reduce the performance risk.
This continuous, regenerative, thermal oxidizer system is unlike any existing pollution control technology and will enable a significant reduction in size and complexity compared to conventional technologies. The system will be mass-produced, unlike existing systems that are custom built. The combination of reduced size, reduced complexity, and mass-production should result in a large reduction in cost. The new system has other advantages such as reduced warm-up time, greater flexibility in applications, and greater safety. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23515
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Ann Arbor,
Michigan
48103-3269
United States
Geographic Scope
Single Zip Code
Rotoheater was awarded
Project Grant 2326861
worth $256,657
from National Science Foundation in February 2024 with work to be completed primarily in Ann Arbor Michigan United States.
The grant
has a duration of 1 year and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
The Project Grant was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase I Programs.
SBIR Details
Research Type
SBIR Phase I
Title
SBIR Phase I: CAS: Advanced Thermal Oxidizer to Cost-effectively Control Greenhouse Emissions from Small Sources
Abstract
This Small Business Innovation Research (SBIR) Phase I project seeks to reduce air pollution, specifically emissions of the greenhouse gas methane, toxic/carcinogenic organic compounds, and odors. Reduction in these emissions serves the public interest by improving human health, well-being, and the environment and is in alignment with NSF’s mission to promote innovative unproven technologies that can benefit society. These emission reductions will be accomplished through the development of a new type of air pollution control technology that can be cost-effectively applied to small emission sources that cannot be effectively controlled using existing technologies. These small emission sources are numerous, and in some cases, located near sensitive or overburdened communities, so the emissions control will have a large impact. The improved cost effectiveness and simplicity of this technology should reduce increasingly more stringent regulatory compliance costs, freeing up both human and capital resources for productive use in other areas.
This SBIR project will support research and development (R&D) into an air pollution control technology for combustible gases that uses a novel, patent-pending, continuous heat regeneration system to enable re-use of thermal energy in a thermal oxidizer. The effort will focus on investigating the fundamental heat transfer, fluid dynamics, and material science of the invention as well as construction and testing of full-scale prototypes to increase the durability and reduce the performance risk. This continuous, regenerative, thermal oxidizer system is unlike any existing pollution control technology and will enable a significant reduction in size and complexity compared to conventional technologies. The system will be mass-produced, unlike existing systems that are custom built. The combination of reduced size, reduced complexity, and mass-production should result in a large reduction in cost. The new system has other advantages such as reduced warm-up time, greater flexibility in applications, and greater safety.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
ET
Solicitation Number
NSF 23-515
Status
(Complete)
Last Modified 2/20/24
Period of Performance
2/15/24
Start Date
1/31/25
End Date
Funding Split
$256.7K
Federal Obligation
$0.0
Non-Federal Obligation
$256.7K
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2326861
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
HGYXLPNB4RR7
Awardee CAGE
9LT43
Performance District
MI-06
Senators
Debbie Stabenow
Gary Peters
Gary Peters
Modified: 2/20/24