2322389
Project Grant
Overview
Grant Description
Sttr Phase I: Silicon-Integrated Epitaxial Barium Titanate (BaTiO3) Chips for Photonics Applications - The broader / commercial impact of this Small Business Technology Transfer (STTR) Phase I project is mass production of a standardized, large-area, silicon-based materials platform (wafer) for photonic integrated circuits. Photonics is the next step in information processing, using light signals instead of electrons.
Such a materials platform is expected to revolutionize the silicon photonics market much like the introduction of silicon chips did for the microelectronics industry. The first step to successfully produce such wafers is to manage the extreme thermal stress arising from the combination of two materials (the optical material barium titanate (BaTiO3) and the silicon carrier chips) with very different rates of thermal expansion.
Various processing techniques will be investigated to determine how such thermal stress can be mitigated. If successful, this new materials platform will be used by telecom and data companies, and may enable new kinds of computing, such as photonic quantum computing. The total of these industries is expected to exceed $100 billion in combined market size by 2030.
This STTR Phase I project will address one of the critical issues of scaling up barium titanate on silicon technology to thicker and larger area wafers. Barium titanate and silicon have very different thermal expansions and since the integration is achieved by deposition at elevated temperature, cooling causes large stresses to develop. The resulting stress may result in cracks in the film or even in shattering the wafer. Stress also affects the optical performance of the material and therefore, its management is crucial for subsequent device fabrication.
The company is developing a process that mitigates this problem (e.g., programmed cooling) which will affect wafer production throughput. In addition, the company must control the direction of ferroelectric polarization, an important customer requirement for making devices. Solving these two issues is crucial to successful commercialization of this technology.
Barium titanate films of thicknesses ranging from 0.2 to 2 micrometers will be integrated on silicon and subject to different thermal histories. Residual stress will be measured by X-ray diffraction and corroborated with polarized Raman spectroscopy. The resulting crystal structure, morphology, polarization distribution, and electro-optic performance will be used as metrics for determining if the thermal processing was successful.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are not planned for this award.
Such a materials platform is expected to revolutionize the silicon photonics market much like the introduction of silicon chips did for the microelectronics industry. The first step to successfully produce such wafers is to manage the extreme thermal stress arising from the combination of two materials (the optical material barium titanate (BaTiO3) and the silicon carrier chips) with very different rates of thermal expansion.
Various processing techniques will be investigated to determine how such thermal stress can be mitigated. If successful, this new materials platform will be used by telecom and data companies, and may enable new kinds of computing, such as photonic quantum computing. The total of these industries is expected to exceed $100 billion in combined market size by 2030.
This STTR Phase I project will address one of the critical issues of scaling up barium titanate on silicon technology to thicker and larger area wafers. Barium titanate and silicon have very different thermal expansions and since the integration is achieved by deposition at elevated temperature, cooling causes large stresses to develop. The resulting stress may result in cracks in the film or even in shattering the wafer. Stress also affects the optical performance of the material and therefore, its management is crucial for subsequent device fabrication.
The company is developing a process that mitigates this problem (e.g., programmed cooling) which will affect wafer production throughput. In addition, the company must control the direction of ferroelectric polarization, an important customer requirement for making devices. Solving these two issues is crucial to successful commercialization of this technology.
Barium titanate films of thicknesses ranging from 0.2 to 2 micrometers will be integrated on silicon and subject to different thermal histories. Residual stress will be measured by X-ray diffraction and corroborated with polarized Raman spectroscopy. The resulting crystal structure, morphology, polarization distribution, and electro-optic performance will be used as metrics for determining if the thermal processing was successful.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23515
Grant Program (CFDA)
Awarding Agency
Place of Performance
Austin,
Texas
78759-6914
United States
Geographic Scope
Single Zip Code
LA Luce Cristallina was awarded
Project Grant 2322389
worth $274,997
from in September 2023 with work to be completed primarily in Austin Texas United States.
The grant
has a duration of 1 year and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
The Project Grant was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase I Programs.
SBIR Details
Research Type
STTR Phase I
Title
STTR Phase I: Silicon-Integrated Epitaxial Barium Titanate (BaTiO3) Chips for Photonics Applications
Abstract
The broader / commercial impact of this Small Business Technology Transfer (STTR) Phase I project is mass production of a standardized, large-area, silicon-based materials platform (wafer) for photonic integrated circuits. Photonics is the next step in information processing, using light signals instead of electrons. Such a materials platform is expected to revolutionize the silicon photonics market much like the introduction of silicon chips did for the microelectronics industry. The first step to successfully produce such wafers is to manage the extreme thermal stress arising from the combination of two materials (the optical material barium titanate (BaTiO3) and the silicon carrier chips) with very different rates of thermal expansion. Various processing techniques will be investigated to determine how such thermal stress can be mitigated. If successful, this new materials platform will used by telecom and data companies, and may enable new kinds of computing, such as photonic quantum computing.The total of these industries is expected to exceed $100 billion in combined market size by 2030. _x000D_ _x000D_ This STTR Phase I project will address one of the critical issues of scaling up barium titanate on silicon technology to thicker and larger area wafers. Barium titanate and silicon have very different thermal expansions and since the integration is achieved by deposition at elevated temperature, cooling causes large stresses to develop. The resulting stress may result in cracks in the film or even in shattering the wafer. Stress also affects the optical performance of the material and therefore, its management is crucial for subsequent device fabrication. The company is developing a process that mitigates this problem (e.g., programmed cooling) which will affect wafer production throughput. In addition, the company must control the direction of ferroelectric polarization, an important customer requirement for making devices. Solving these two issues is crucial to successful commercialization of this technology. Barium titanate films of thicknesses ranging from 0.2 to 2 micrometers will be integrated on silicon and subject to different thermal histories. Residual stress will be measured by x-ray diffraction and corroborated with polarized Raman spectroscopy. The resulting crystal structure, morphology, polarization distribution, and electro-optic performance will be used as metrics for determining if the thermal processing was successful._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
AM
Solicitation Number
NSF 23-515
Status
(Complete)
Last Modified 10/6/23
Period of Performance
9/15/23
Start Date
8/31/24
End Date
Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
Activity Timeline
Transaction History
Modifications to 2322389
Additional Detail
Award ID FAIN
2322389
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
M359P2QDF8D4
Awardee CAGE
9BSE1
Performance District
TX-37
Senators
John Cornyn
Ted Cruz
Ted Cruz
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $274,997 | 100% |
Modified: 10/6/23