Search Prime Grants

2322302

Cooperative Agreement

Overview

Grant Description
Sbir Phase II: Development of an Industrial Flow Meter for Low-Volume Dispensing -This small business innovation research (SBIR) Phase II project addresses an unmet need in the small dose dispensing market ($35.63 billion annually). The pharmaceutical, medical device, agriculture, and consumer product sectors all have carefully curated sensory-stimulating mixtures of concentrated liquids and need to deliver extremely small volumes in an efficient, accurate, and precise manner to minimize lost materials and ensure the satisfaction of their customers, while minimizing environmental impacts.

Additionally, end-use applications such as in-home mixing of flavors and fragrances or real-time on-the-fly nutrient mixing in agriculture have demonstrated a particularly high need. Current dispensing technologies do not meet the unique needs of beachhead customers as competing technologies are too large, expensive, or unable to measure a wide array of fluids that may be highly viscous or opaque. The new approach promises to bring functionality to end users, that is only currently possible in highly controlled industrial settings.

In addition to the economic impacts associated with the commercialization of this elastic filament velocimetry (EFV) technology, these new products will also help to mitigate the environmental impacts of precision agriculture, increasing the concentration of dispensed materials, and thereby reducing transportation and dilution costs. This project validates an accurate and precise flow meter for measuring small flow rates of highly concentrated materials, enabling on-the-fly dispensing of low-volume fluids to create customized mixtures to meet end user needs.

The technology utilizes EFV, a novel approach that uses a strain-based sensor that responds to fluid flow by deformation of a sensing element which changes its resistance in relation to fluid velocity. The proof-of-concept probe is sterilizable, highly accurate, and resource-efficient, enabling customers to accurately dispense small volumes of fluids across a broad range of viscosities with up to twenty-fold increase in throughput, 75% footprint reduction, and 95% reduction in cost, with increased accuracy and precision.

These properties directly meet the needs of customers in several industrial segments including pharmaceutical dispensing, scientific research and development, and manufacturing, with an initial focus on end-use applications in food and beverage, flavors and fragrances, and precision agriculture. The research will significantly de-risk commercialization of the technology by demonstrating and expanding the technical capabilities of the probe to achieve product-market fit. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.- Subawards are not planned for this award.
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH PHASE II (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE II", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23516
Awarding / Funding Agency
Place of Performance
Princeton, New Jersey 08540-6608 United States
Geographic Scope
Single Zip Code
Tendo Technologies was awarded Cooperative Agreement 2322302 worth $999,593 from National Science Foundation in November 2023 with work to be completed primarily in Princeton New Jersey United States. The grant has a duration of 2 years and was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships. The Cooperative Agreement was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase II Programs (SBIR/STTR Phase II).

SBIR Details

Research Type
SBIR Phase II
Title
SBIR Phase II: Development of an industrial flow meter for low-volume dispensing
Abstract
This Small Business Innovation Research (SBIR) Phase II project addresses an unmet need in the small dose dispensing market ($35.63 billion annually). The pharmaceutical, medical device, agriculture, and consumer product sectors all have carefully curated sensory-stimulating mixtures of concentrated liquids and need to deliver extremely small volumes in an efficient, accurate, and precise manner to minimize lost materials and ensure the satisfaction of their customers, while minimizing environmental impacts. Additionally, end-use applications such as in-home mixing of flavors and fragrances or real-time on-the-fly nutrient mixing in agriculture have demonstrated a particularly high need. Current dispensing technologies do not meet the unique needs of beachhead customers as competing technologies are too large, expensive, or unable to measure a wide array of fluids that may be highly viscous or opaque. The new approach promises to bring functionality to end users, that is only currently possible in highly controlled industrial settings. In addition to the economic impacts associated with the commercialization of this elastic filament velocimetry (EFV) technology, these new products will also help to mitigate the environmental impacts of precision agriculture, increasing the concentration of dispensed materials, and thereby reducing transportation and dilution costs. This project validates an accurate and precise flow meter for measuring small flow rates of highly concentrated materials, enabling on-the-fly dispensing of low-volume fluids to create customized mixtures to meet end user needs. The technology utilizes EFV, a novel approach that uses a strain-based sensor that responds to fluid flow by deformation of a sensing element which changes its resistance in relation to fluid velocity. The proof-of-concept probe is sterilizable, highly accurate, and resource-efficient, enabling customers to accurately dispense small volumes of fluids across a broad range of viscosities with up to twenty-fold increase in throughput, 75% footprint reduction, and 95% reduction in cost, with increased accuracy and precision. These properties directly meet the needs of customers in several industrial segments including pharmaceutical dispensing, scientific research and development, and manufacturing, with an initial focus on end-use applications in food and beverage, flavors and fragrances, and precision agriculture. The research will significantly de-risk commercialization of the technology by demonstrating and expanding the technical capabilities of the probe to achieve product-market fit. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
IH
Solicitation Number
NSF 23-516

Status
(Ongoing)

Last Modified 11/22/23

Period of Performance
11/15/23
Start Date
10/31/25
End Date
90.0% Complete

Funding Split
$999.6K
Federal Obligation
$0.0
Non-Federal Obligation
$999.6K
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to 2322302

Additional Detail

Award ID FAIN
2322302
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
XVQQXRQRMQG5
Awardee CAGE
8VML7
Performance District
NJ-12
Senators
Robert Menendez
Cory Booker
Modified: 11/22/23