Search Prime Grants

2322184

Cooperative Agreement

Overview

Grant Description
SBIR Phase II: Novel Manufacturing Method for Precision Optical Encoders - This Small Business Innovation Research (SBIR) Phase II project aims to develop a novel manufacturing method to produce high-accuracy, optical encoders. Encoders are sensors that measure position, either linear or angular, and convert it into an electronic signal.

Modern automation and robotics systems heavily rely on encoders for precision positioning and motion control. The global encoder market is projected to reach $4.4 billion by 2028, growing from $2.4 billion in 2022. Increasingly accurate encoders are needed to further innovate and enable the manufacturing of complex next-generation products, such as advanced microchips, implantable medical devices, and precision weapon systems.

As design specifications become more stringent, the need to meet the demand for high-precision encoders becomes paramount. Successful completion of the project will establish a pilot capability to cost-effectively produce encoders with over an order of magnitude finer fundamental resolution.

The intellectual merit of this project is focused on developing a technology that has the potential to revolutionize the manufacturing of optical encoders. Traditional encoder production involves using contact photolithography to replicate a pattern from a master photomask. However, this process requires a full-size photomask, introduces defects and errors into the device, and limits the achievable accuracy and resolution.

To address these drawbacks, a novel, high-resolution, projection lithography system is being developed to drive an additive micro-fabrication technique. The new approach offers numerous advantages, including economically viable production of precision encoders with sub-nanometer resolution, improved manufacturing yield, and shorter lead times.

The Phase II research activities encompass the development of a full-size hardware prototype with performance traceable to NIST (National Institute of Standards and Technology) standards, as well as the establishment of the necessary infrastructure to support the newly developed technology.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH PHASE II (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE II", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23516
Awarding / Funding Agency
Place of Performance
Lafayette, Indiana 47905-4475 United States
Geographic Scope
Single Zip Code
ZS Systems was awarded Cooperative Agreement 2322184 worth $1,000,000 from National Science Foundation in October 2023 with work to be completed primarily in Lafayette Indiana United States. The grant has a duration of 2 years and was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships. The Cooperative Agreement was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase II Programs (SBIR/STTR Phase II).

SBIR Details

Research Type
SBIR Phase II
Title
SBIR Phase II: Novel Manufacturing Method for Precision Optical Encoders
Abstract
This Small Business Innovation Research (SBIR) Phase II project aims to develop a novel manufacturing method to produce high-accuracy, optical encoders. Encoders are sensors that measure position, either linear or angular, and convert it into an electronic signal. Modern automation and robotics systems heavily rely on encoders for precision positioning and motion control. The global encoder market is projected to reach $4.4 billion by 2028, growing from $2.4 billion in 2022. Increasingly accurate encoders are needed to further innovate and enable the manufacturing of complex next-generation products, such as advanced microchips, implantable medical devices, and precision weapon systems. As design specifications become more stringent, the need to meet the demand for high-precision encoders becomes paramount. Successful completion of the project will establish a pilot capability to cost-effectively produce encoders with over an order of magnitude finer fundamental resolution._x000D_ _x000D_ The intellectual merit of this project is focused on developing a technology that has the potential to revolutionize the manufacturing of optical encoders. Traditional encoder production involves using contact photolithography to replicate a pattern from a master photomask. However, this process requires a full-size photomask, introduces defects and errors into the device, and limits the achievable accuracy and resolution. To address these drawbacks, a novel, high-resolution, projection lithography system is being developed to drive an additive micro-fabrication technique. The new approach offers numerous advantages, including economically viable production of precision encoders with sub-nanometer resolution, improved manufacturing yield, and shorter lead times. The Phase II research activities encompass the development of a full-size hardware prototype with performance traceable to NIST (National Institute of Standards and Technology) standards, as well as the establishment of the necessary infrastructure to support the newly developed technology._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
IH
Solicitation Number
NSF 23-516

Status
(Complete)

Last Modified 10/6/23

Period of Performance
10/1/23
Start Date
9/30/25
End Date
100% Complete

Funding Split
$1.0M
Federal Obligation
$0.0
Non-Federal Obligation
$1.0M
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to 2322184

Additional Detail

Award ID FAIN
2322184
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
G9MDYZS6V6G4
Awardee CAGE
8HLC4
Performance District
IN-04
Senators
Todd Young
Mike Braun

Budget Funding

Federal Account Budget Subfunction Object Class Total Percentage
Research and Related Activities, National Science Foundation (049-0100) General science and basic research Grants, subsidies, and contributions (41.0) $1,000,000 100%
Modified: 10/6/23