2322073
Cooperative Agreement
Overview
Grant Description
SBIR Phase II: Resilience for Waterfront Infrastructure - The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase II project is to drive restoration and preservation of coastal wetlands by unlocking their ecosystem value.
Many coastal communities are underserved and do not have resources to adapt to increasing risks from erosion, storms, and sea level rise. Enhanced coastal resilience and restoration promotes biodiversity, which bolsters coastal communities through improved fisheries, tourism, and water quality, as well as other blue economy benefits.
This project will enable coastal communities to access funds from monetizing project co-benefits and promote nature-based solutions with economic and environmental benefits. This project advances NSF's mission by developing analytical tools that can directly benefit national welfare.
The project can create significant impact by enabling more environmentally sustainable adaptation techniques, expanding financing alternatives for coastal wetlands restoration, and promoting equitable actions. This solution creates ecological and socio-economic benefits by addressing the need for more sustainable communities given coastal migration trends and rising sea levels and increased storm intensities.
This approach utilizes high-resolution satellite imagery and artificial intelligence to accurately and systematically measure the carbon stock in coastal wetlands. The project will include an integrated suite of technologies for new datasets, a modeling framework to identify coastal shorelines at risk of erosion, high fidelity maps of blue carbon stock, and the characterization of biodiversity in relation to the environment.
This project is expected to make significant contributions to the protection of coastal wetlands and the development of novel methods to analyze blue carbon stocks. The project will build on the existing software platform developed during Phase I and extend its application to determine the different blue carbon pools in marshes and mangrove ecosystems.
By accurately measuring erosive conditions and carbon stock at a high spatial resolution in coastal wetlands, this solution has the potential to enable markets to meet sustainability goals while preserving the numerous benefits that wetlands provide to the environment and communities.
The project would also decrease the uncertainty in the measurement of blue carbon at a high spatial resolution, a critical factor for creating trustworthy and reliable carbon credits, which can be used to finance the restoration and preservation of coastal wetlands.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are planned for this award.
Many coastal communities are underserved and do not have resources to adapt to increasing risks from erosion, storms, and sea level rise. Enhanced coastal resilience and restoration promotes biodiversity, which bolsters coastal communities through improved fisheries, tourism, and water quality, as well as other blue economy benefits.
This project will enable coastal communities to access funds from monetizing project co-benefits and promote nature-based solutions with economic and environmental benefits. This project advances NSF's mission by developing analytical tools that can directly benefit national welfare.
The project can create significant impact by enabling more environmentally sustainable adaptation techniques, expanding financing alternatives for coastal wetlands restoration, and promoting equitable actions. This solution creates ecological and socio-economic benefits by addressing the need for more sustainable communities given coastal migration trends and rising sea levels and increased storm intensities.
This approach utilizes high-resolution satellite imagery and artificial intelligence to accurately and systematically measure the carbon stock in coastal wetlands. The project will include an integrated suite of technologies for new datasets, a modeling framework to identify coastal shorelines at risk of erosion, high fidelity maps of blue carbon stock, and the characterization of biodiversity in relation to the environment.
This project is expected to make significant contributions to the protection of coastal wetlands and the development of novel methods to analyze blue carbon stocks. The project will build on the existing software platform developed during Phase I and extend its application to determine the different blue carbon pools in marshes and mangrove ecosystems.
By accurately measuring erosive conditions and carbon stock at a high spatial resolution in coastal wetlands, this solution has the potential to enable markets to meet sustainability goals while preserving the numerous benefits that wetlands provide to the environment and communities.
The project would also decrease the uncertainty in the measurement of blue carbon at a high spatial resolution, a critical factor for creating trustworthy and reliable carbon credits, which can be used to finance the restoration and preservation of coastal wetlands.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH PHASE II (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE II", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23516
Grant Program (CFDA)
Awarding Agency
Place of Performance
Raleigh,
North Carolina
27617-4752
United States
Geographic Scope
Single Zip Code
Related Opportunity
Analysis Notes
Amendment Since initial award the End Date has been extended from 09/30/25 to 09/30/26 and the total obligations have increased 50% from $995,338 to $1,495,326.
Natrx was awarded
Cooperative Agreement 2322073
worth $1,495,326
from in October 2023 with work to be completed primarily in Raleigh North Carolina United States.
The grant
has a duration of 3 years and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
The Cooperative Agreement was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase II Programs (SBIR/STTR Phase II).
SBIR Details
Research Type
SBIR Phase II
Title
SBIR Phase II:Resilience for Waterfront Infrastructure
Abstract
The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase II project is to drive restoration and preservation of coastal wetlands by unlocking their ecosystem value. Many coastal communities are underserved and do not have resources to adapt to increasing risks from erosion, storms, and sea level rise. Enhanced coastal resilience and restoration promotes biodiversity, which bolsters coastal communities through improved fisheries, tourism, and water quality, as well as other "blue economy" benefits. This project will enable coastal communities to access funds from monetizing project co-benefits and promote nature-based solutions with economic and environmental benefits. This project advances NSF’s mission by developing analytical tools that can directly benefit national welfare. The project can create significant impact by enabling more environmentally sustainable adaptation techniques, expanding financing alternatives for coastal wetlands restoration, and promoting equitable actions. This solution creates ecological and socio-economic benefits by addressing the need for more sustainable communities given coastal migration trends and rising sea levels and increased storm intensities. _x000D_ _x000D_ _x000D_ This approach utilizes high-resolution satellite imagery and artificial intelligence to accurately and systematically measure the carbon stock in coastal wetlands. The project will include an integrated suite of technologies for new datasets, a modeling framework to identify coastal shorelines at risk of erosion, high fidelity maps of blue carbon stock, and the characterization of biodiversity in relation to the environment. This project is expected to make significant contributions to the protection of coastal wetlands and the development of novel methods to analyze blue carbon stocks. The project will build on the existing software platform developed during Phase I and extend its application to determine the different blue carbon pools in marshes and mangrove ecosystems.By accurately measuring erosive conditions and carbon stock at a high spatial resolution in coastal wetlands, this solution has the potential to enable markets to meet sustainability goals while preserving the numerous benefits that wetlands provide to the environment and communities. The project would also decrease the uncertainty in the measurement of blue carbon at a high spatial resolution, a critical factor for creating trustworthy and reliable carbon credits, which can be used to finance the restoration and preservation of coastal wetlands._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
ET
Solicitation Number
NSF 23-516
Status
(Ongoing)
Last Modified 8/21/25
Period of Performance
10/1/23
Start Date
9/30/26
End Date
Funding Split
$1.5M
Federal Obligation
$0.0
Non-Federal Obligation
$1.5M
Total Obligated
Activity Timeline
Transaction History
Modifications to 2322073
Additional Detail
Award ID FAIN
2322073
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
YWFMDGWC1F85
Awardee CAGE
8HWE6
Performance District
NC-02
Senators
Thom Tillis
Ted Budd
Ted Budd
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $995,338 | 100% |
Modified: 8/21/25