2321989
Project Grant
Overview
Grant Description
Sbir Phase I: Low Cost Metal Chelate Flow Battery for Long Duration Energy Storage -this small business innovation research (SBIR) Phase I project develops the chemistry for a new flow battery used to store energy for the electric grid. The battery chemistry uses abundant minerals and materials that can be sourced and manufactured in the United States. These flow battery materials support long duration energy storage of 4 to 100 hours ? enough to back up the grid and support increased use of intermittent power sources such as solar and wind.
This flow battery technology aims to meet aggressive cost targets for grid-scale storage, positioning the company to take advantage of the domestic and international market demand for energy storage. The battery system provides an opportunity for the U.S. to own high impact battery technology and claim a leadership position in the long duration energy storage market. This SBIR Phase I project seeks to lower the materials costs of a metal chelate flow battery for 10+ hour storage durations with greater than 80% round-trip efficiency.
The goal is to develop a material purification process that uses low-grade minerals and removes key impurities with minimal waste. This goal will be achieved through the development and construction of a chemical purification system that selectively removes the impurities present in the low-grade minerals. The process will be validated by the demonstration of a flow battery operating with 10+ hours of continuous discharge at full power.
The research and development effort focuses on a holistic solution to flow battery performance via a new chemistry that optimizes cost, abundance, safety, and performance in a single platform for long duration energy storage. Areas of development include electrolyte purity, sensitivity to precursors, processes development, system fouling and electrolyte purity sensitivity, purification system design and recycling, and 10-24 hour discharge battery performance demonstration incorporating the new purification process. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the foundation's intellectual merit and broader impacts review criteria. - subawards are not planned for this award.
This flow battery technology aims to meet aggressive cost targets for grid-scale storage, positioning the company to take advantage of the domestic and international market demand for energy storage. The battery system provides an opportunity for the U.S. to own high impact battery technology and claim a leadership position in the long duration energy storage market. This SBIR Phase I project seeks to lower the materials costs of a metal chelate flow battery for 10+ hour storage durations with greater than 80% round-trip efficiency.
The goal is to develop a material purification process that uses low-grade minerals and removes key impurities with minimal waste. This goal will be achieved through the development and construction of a chemical purification system that selectively removes the impurities present in the low-grade minerals. The process will be validated by the demonstration of a flow battery operating with 10+ hours of continuous discharge at full power.
The research and development effort focuses on a holistic solution to flow battery performance via a new chemistry that optimizes cost, abundance, safety, and performance in a single platform for long duration energy storage. Areas of development include electrolyte purity, sensitivity to precursors, processes development, system fouling and electrolyte purity sensitivity, purification system design and recycling, and 10-24 hour discharge battery performance demonstration incorporating the new purification process. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the foundation's intellectual merit and broader impacts review criteria. - subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23515
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Boulder,
Colorado
80303-2102
United States
Geographic Scope
Single Zip Code
Otoro Energy was awarded
Project Grant 2321989
worth $275,000
from National Science Foundation in January 2024 with work to be completed primarily in Boulder Colorado United States.
The grant
has a duration of 8 months and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
The Project Grant was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase I Programs.
SBIR Details
Research Type
SBIR Phase I
Title
SBIR Phase I: Low Cost Metal Chelate Flow Battery for Long Duration Energy Storage
Abstract
This Small Business Innovation Research (SBIR) Phase I project develops the chemistry for a new flow battery used to store energy for the electric grid. The battery chemistry uses abundant minerals and materials that can be sourced and manufactured in the United States. These flow battery materials support long duration energy storage of 4 to 100 hours – enough to back up the grid and support increased use of intermittent power sources such as solar and wind. This flow battery technology aims to meet aggressive cost targets for grid-scale storage, positioning the company to take advantage of the domestic and international market demand for energy storage. The battery system provides an opportunity for the U.S. to own high impact battery technology and claim a leadership position in the long duration energy storage market.
This SBIR Phase I project seeks to lower the materials costs of a metal chelate flow battery for 10+ hour storage durations with greater than 80% round-trip efficiency. The goal is to develop a material purification process that uses low-grade minerals and removes key impurities with minimal waste. This goal will be achieved through the development and construction of a chemical purification system that selectively removes the impurities present in the low-grade minerals. The process will be validated by the demonstration of a flow battery operating with 10+ hours of continuous discharge at full power. The research and development effort focuses on a holistic solution to flow battery performance via a new chemistry that optimizes cost, abundance, safety, and performance in a single platform for long duration energy storage. Areas of development include electrolyte purity, sensitivity to precursors, processes development, system fouling and electrolyte purity sensitivity, purification system design and recycling, and 10-24 hour discharge battery performance demonstration incorporating the new purification process.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
EN
Solicitation Number
NSF 23-515
Status
(Complete)
Last Modified 2/7/24
Period of Performance
1/15/24
Start Date
9/30/24
End Date
Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2321989
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
K5Q1JVNYFKP3
Awardee CAGE
922F0
Performance District
CO-02
Senators
Michael Bennet
John Hickenlooper
John Hickenlooper
Modified: 2/7/24