2321886
Project Grant
Overview
Grant Description
STTR Phase I: Novel Medical Equipment Utilization Tracking System for Improved Patient Safety and Hospital Efficiency - The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase I project relates to the development of a novel system capable of measuring medical equipment utilization with high accuracy and scalability. This innovation will arm healthcare technology managers with the insights needed to optimize inventory size and composition according to actual patient needs, thereby saving hospitals an estimated $23.3 billion annually in equipment-related costs, in addition to making possible usage-based predictive maintenance that can effectively prevent dangerous equipment failures.
Beyond these core value propositions, comprehensive medical equipment utilization insights may be leveraged to facilitate strategic resource management in public health emergencies, increase energy efficiency of healthcare facilities, and improve regulatory surveillance of emerging equipment safety issues. The results of this project will form the basis for a hardware-enabled service and clear the path towards development of deployable products, clinical pilots, and early sales. Through commercialization under a sustainable business model, the envisioned product will substantially increase the economic competitiveness of US hospitals, which comprises one of the largest sectors of the American economy. The project will also advance the health and welfare of the American public through improved medical device safety and management.
This Small Business Technology Transfer (STTR) Phase I project will establish technical and commercial feasibility for an innovative, asset-agnostic, medical equipment utilization tracking system which will integrate state-of-the-art techniques for non-intrusive load monitoring, deep learning, and edge computing in order to overcome previously insurmountable asset monitoring challenges posed by the heterogeneity and churn of hospital equipment inventories. Key technical hurdles to be addressed relate to the capture and characterization of medical equipment electrical load data, real-time translation of this data into accurate usage statistics suitable for hospital decision-making, and distributed implementation of this process through non-invasive sensor modules that are broadly compatible with sundry medical equipment.
The proposed research will overcome these hurdles through (i) systematic collection and analysis of power consumption data from a representative group of medical equipment under various operational states, (ii) formulation, training, and validation of adaptive artificial neural networks that predict usage from power data, (iii) construction of a proof-of-concept intelligent sensor module, and (iv) system performance testing in a simulated clinical environment. Through completion of these objectives, this project will advance knowledge in the fields of hospital asset management and industrial Internet-of-Things.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are planned for this award.
Beyond these core value propositions, comprehensive medical equipment utilization insights may be leveraged to facilitate strategic resource management in public health emergencies, increase energy efficiency of healthcare facilities, and improve regulatory surveillance of emerging equipment safety issues. The results of this project will form the basis for a hardware-enabled service and clear the path towards development of deployable products, clinical pilots, and early sales. Through commercialization under a sustainable business model, the envisioned product will substantially increase the economic competitiveness of US hospitals, which comprises one of the largest sectors of the American economy. The project will also advance the health and welfare of the American public through improved medical device safety and management.
This Small Business Technology Transfer (STTR) Phase I project will establish technical and commercial feasibility for an innovative, asset-agnostic, medical equipment utilization tracking system which will integrate state-of-the-art techniques for non-intrusive load monitoring, deep learning, and edge computing in order to overcome previously insurmountable asset monitoring challenges posed by the heterogeneity and churn of hospital equipment inventories. Key technical hurdles to be addressed relate to the capture and characterization of medical equipment electrical load data, real-time translation of this data into accurate usage statistics suitable for hospital decision-making, and distributed implementation of this process through non-invasive sensor modules that are broadly compatible with sundry medical equipment.
The proposed research will overcome these hurdles through (i) systematic collection and analysis of power consumption data from a representative group of medical equipment under various operational states, (ii) formulation, training, and validation of adaptive artificial neural networks that predict usage from power data, (iii) construction of a proof-of-concept intelligent sensor module, and (iv) system performance testing in a simulated clinical environment. Through completion of these objectives, this project will advance knowledge in the fields of hospital asset management and industrial Internet-of-Things.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23515
Grant Program (CFDA)
Awarding Agency
Place of Performance
White Plains,
Maryland
20695-3310
United States
Geographic Scope
Single Zip Code
Related Opportunity
Analysis Notes
Amendment Since initial award the End Date has been extended from 08/31/24 to 02/28/26.
Opal Htm was awarded
Project Grant 2321886
worth $275,000
from in September 2023 with work to be completed primarily in White Plains Maryland United States.
The grant
has a duration of 2 years 5 months and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
The Project Grant was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase I Programs.
SBIR Details
Research Type
STTR Phase I
Title
STTR Phase I:Novel Medical Equipment Utilization Tracking System for Improved Patient Safety and Hospital Efficiency
Abstract
The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase I project relates to the development of a novel system capable of measuring medical equipment utilization with high accuracy and scalability. This innovation will arm healthcare technology managers with the insights needed to optimize inventory size and composition according to actual patient needs, thereby saving hospitals an estimated $23.3 billion annually in equipment-related costs, in addition to making possible usage-based predictive maintenance that can effectively prevent dangerous equipment failures. Beyond these core value propositions, comprehensive medical equipment utilization insights may be leveraged to facilitate strategic resource management in public health emergencies, increase energy efficiency of healthcare facilities, and improve regulatory surveillance of emerging equipment safety issues. The results of this project will form the basis for a hardware-enabled service and clear the path towards development of deployable products, clinical pilots, and early sales. Through commercialization under a sustainable business model, the envisioned product will substantially increase the economic competitiveness of US hospitals, which comprises one of the largest sectors of the American economy.The project will also advance the health and welfare of the American public through improved medical device safety and management. _x000D_ _x000D_ This Small Business Technology Transfer (STTR) Phase I project will establish technical and commercial feasibility for an innovative, asset-agnostic, medical equipment utilization tracking system which will integrate state-of-the-art techniques for non-intrusive load monitoring, deep learning, and edge computing in order to overcome previously insurmountable asset monitoring challenges posed by the heterogeneity and churn of hospital equipment inventories. Key technical hurdles to be addressed relate to the capture and characterization of medical equipment electrical load data, real-time translation of this data into accurate usage statistics suitable for hospital decision-making, and distributed implementation of this process through non-invasive sensor modules that are broadly compatible with sundry medical equipment. The proposed research will overcome these hurdles through (i) systematic collection and analysis of power consumption data from a representative group of medical equipment under various operational states, (ii) formulation, training, and validation of adaptive artificial neural networks that predict usage from power data, (iii) construction of a proof-of-concept intelligent sensor module, and (iv) system performance testing in a simulated clinical environment. Through completion of these objectives, this project will advance knowledge in the fields of hospital asset management and industrial Internet-of-Things._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
I
Solicitation Number
NSF 23-515
Status
(Ongoing)
Last Modified 8/12/25
Period of Performance
9/1/23
Start Date
2/28/26
End Date
Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
Activity Timeline
Transaction History
Modifications to 2321886
Additional Detail
Award ID FAIN
2321886
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
KW2NMJ1EGY69
Awardee CAGE
7ZQ90
Performance District
MD-05
Senators
Benjamin Cardin
Chris Van Hollen
Chris Van Hollen
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $275,000 | 100% |
Modified: 8/12/25