2321446
Project Grant
Overview
Grant Description
SBIR Phase I: CAS: Climate-Eco-Friendly Biocoating for Passive Cooling of Infrastructure - The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase I project seeks to reduce global warming using an innovative passive cooling technique.
The project will develop an environmentally friendly, passive cooling coating that can help reduce the temperature of buildings. The coating is expected to provide energy reductions ranging from 5-25%, depending on climate and building characteristics. The solution may reduce the need for traditional compressor-based cooling systems (e.g., air conditioners), which require a constant supply of electricity and coolants, stressing the environment through the greenhouse effect.
The company expects to generate commercial revenues from both the paint-like coating featuring biocompatible passive cooling fibers and raw hydroxyapatite (HAP) fibers. Main customer target groups for the paint matrix include commercial and residential building owners that are looking for ways to lower their electric bills while lessening their negative environmental footprint.
The proposed innovation is founded on self-cleaning, fire-resistant, cooling fibers formulated with HAP. HAP cooling fibers will be integrated within a paint matrix for ease of application and cost-effectiveness. The aim is to develop and commercialize this environmentally friendly, passive cooling material as a coating with multiple functionalities.
The team will identify environmentally friendly, paint-based materials within cost constraints, determine paint-fiber compatibility, and validate the cooling performance of candidate composites. The durability of the paint materials will also be confirmed.
The project will focus on the design of a small-scale manufacturing line capable of producing fiber-based cooling paint at pilot scale for repeatability and field validation.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are not planned for this award.
The project will develop an environmentally friendly, passive cooling coating that can help reduce the temperature of buildings. The coating is expected to provide energy reductions ranging from 5-25%, depending on climate and building characteristics. The solution may reduce the need for traditional compressor-based cooling systems (e.g., air conditioners), which require a constant supply of electricity and coolants, stressing the environment through the greenhouse effect.
The company expects to generate commercial revenues from both the paint-like coating featuring biocompatible passive cooling fibers and raw hydroxyapatite (HAP) fibers. Main customer target groups for the paint matrix include commercial and residential building owners that are looking for ways to lower their electric bills while lessening their negative environmental footprint.
The proposed innovation is founded on self-cleaning, fire-resistant, cooling fibers formulated with HAP. HAP cooling fibers will be integrated within a paint matrix for ease of application and cost-effectiveness. The aim is to develop and commercialize this environmentally friendly, passive cooling material as a coating with multiple functionalities.
The team will identify environmentally friendly, paint-based materials within cost constraints, determine paint-fiber compatibility, and validate the cooling performance of candidate composites. The durability of the paint materials will also be confirmed.
The project will focus on the design of a small-scale manufacturing line capable of producing fiber-based cooling paint at pilot scale for repeatability and field validation.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23515
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Boston,
Massachusetts
02115-6806
United States
Geographic Scope
Single Zip Code
Planck Energies was awarded
Project Grant 2321446
worth $275,000
from National Science Foundation in September 2023 with work to be completed primarily in Boston Massachusetts United States.
The grant
has a duration of 1 year and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
The Project Grant was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase I Programs.
SBIR Details
Research Type
SBIR Phase I
Title
SBIR Phase I: CAS: Climate-Eco-friendly Biocoating for Passive Cooling of Infrastructure
Abstract
The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase I project seeks to reduce global warming using an innovative passive cooling technique. The project will develop an environmentally friendly, passive cooling coating that can help reduce the temperature of buildings. The coating is expected to provide energy reductions ranging from 5-25%, depending on climate and building characteristics.The solution may reduce the need for traditional compressor-based cooling systems (e.g., air conditioners), which require a constant supply of electricity and coolants, stressing the environment through the greenhouse effect. The company expects to generate commercial revenues from both the paint-like coating featuring biocompatible passive cooling fibers and raw hydroxyapatite (HAP) fibers. Main customer target groups for the paint matrix include commercial and residential building owners that are looking for ways to lower their electric bills while lessening their negative environmental footprint._x000D_ _x000D_ The proposed innovation is founded on self-cleaning, fire-resistant, cooling fibers formulated with HAP. HAP cooling fibers will be integrated within a paint matrix for ease of application and cost-effectiveness. The aim is to develop and commercialize this environmentally friendly, passive cooling material as a coating with multiple functionalities. The team will identify environmentally friendly, paint-based materials within cost constraints, determine paint-fiber compatibility, and validate the cooling performance of candidate composites. The durability of the paint materials will also be confirmed. The project will focus on the design of a small-scale manufacturing line capable of producing fiber-based cooling paint at pilot scale for repeatability and field validation._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
AM
Solicitation Number
NSF 23-515
Status
(Complete)
Last Modified 9/5/23
Period of Performance
9/1/23
Start Date
8/31/24
End Date
Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2321446
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
F7TPPF327KN6
Awardee CAGE
9FVT0
Performance District
MA-07
Senators
Edward Markey
Elizabeth Warren
Elizabeth Warren
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $275,000 | 100% |
Modified: 9/5/23