2318600
Project Grant
Overview
Grant Description
SBIR Phase I: A fully electric space vehicle propulsion engine - the broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is a fundamental change in the way spacecraft propulsion can be achieved, perhaps leading to orders of magnitude faster space travel.
Recent physics breakthroughs suggest that the development of an electromagnetically powered engine could enable high-speed travel under the right conditions. Commercially, there is great potential to decrease transit time to destinations on Earth, to low-Earth orbit, to the Moon, and to destinations further in our solar system.
Success in developing this engine will initially be developed by improving satellite positioning and accessing orbits. Further scale up of this propulsion system could serve as a platform technology to enable increased access to space due to reduced need for chemical propellant and enhanced speeds.
This SBIR Phase I project develops and tests a prototype engine by verifying the creation of electromagnetically driven propulsion. By utilizing a complex dielectric material as the environment where electromagnetic energy is introduced, the proof-of-concept engine will verify that the weak and strong force conditions are not violated and that a positive energy density can initiate nanoscopic distortions, to demonstrate novel electromagnetic propulsion in the form of further scalable engines.
A number of researchers have begun building upon the work of Albert Einstein's general relativity theory and now Miguel Alcubierre's metric that suggests that a vessel can be propelled by selective distortion. Two key goals are the development and implementation of the complex dielectric material, and the determinization of the radio frequency power required to achieve sufficient propulsion.
The project approach will include: (a) mathematical modeling, (b) comprehensive simulations of different embodiments of the approach, (c) experimental verification of nanoscopic distortions using an established laser interferometry approach, and (d) design and testing of the prototype propulsion engine.
Beyond the initial prototype, the next stages include an optimization of the power/distortion metrics, association of the distortion to thrust, and maximization of the thrust to weight ratio. Ultimately, this research is expected to lead to enhanced electric propulsion that will be applicable initially to satellites, but ultimately, to a wide range of on Earth and off planet propulsion.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are not planned for this award.
Recent physics breakthroughs suggest that the development of an electromagnetically powered engine could enable high-speed travel under the right conditions. Commercially, there is great potential to decrease transit time to destinations on Earth, to low-Earth orbit, to the Moon, and to destinations further in our solar system.
Success in developing this engine will initially be developed by improving satellite positioning and accessing orbits. Further scale up of this propulsion system could serve as a platform technology to enable increased access to space due to reduced need for chemical propellant and enhanced speeds.
This SBIR Phase I project develops and tests a prototype engine by verifying the creation of electromagnetically driven propulsion. By utilizing a complex dielectric material as the environment where electromagnetic energy is introduced, the proof-of-concept engine will verify that the weak and strong force conditions are not violated and that a positive energy density can initiate nanoscopic distortions, to demonstrate novel electromagnetic propulsion in the form of further scalable engines.
A number of researchers have begun building upon the work of Albert Einstein's general relativity theory and now Miguel Alcubierre's metric that suggests that a vessel can be propelled by selective distortion. Two key goals are the development and implementation of the complex dielectric material, and the determinization of the radio frequency power required to achieve sufficient propulsion.
The project approach will include: (a) mathematical modeling, (b) comprehensive simulations of different embodiments of the approach, (c) experimental verification of nanoscopic distortions using an established laser interferometry approach, and (d) design and testing of the prototype propulsion engine.
Beyond the initial prototype, the next stages include an optimization of the power/distortion metrics, association of the distortion to thrust, and maximization of the thrust to weight ratio. Ultimately, this research is expected to lead to enhanced electric propulsion that will be applicable initially to satellites, but ultimately, to a wide range of on Earth and off planet propulsion.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23515
Grant Program (CFDA)
Awarding Agency
Place of Performance
Victoria,
Texas
77904-2964
United States
Geographic Scope
Single Zip Code
Morningbird Media Corporation was awarded
Project Grant 2318600
worth $272,800
from in September 2023 with work to be completed primarily in Victoria Texas United States.
The grant
has a duration of 1 year and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
The Project Grant was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase I Programs.
SBIR Details
Research Type
SBIR Phase I
Title
SBIR Phase I:A Fully Electric Space Vehicle Propulsion Engine
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is a fundamental change in the way spacecraft propulsion can be achieved, perhaps leading to orders of magnitude faster space travel. Recent physics breakthroughs suggest that the development of an electromagnetically powered engine could enable high-speed travel under the right conditions. Commercially, there is great potential to decrease transit time to destinations on earth, to low-earth orbit, to the moon, and to destinations further in our solar system.Success in developing this engine will initially be developed by improving satellite positioning and accessing orbits. Further scale up of this propulsion system could serve as a platform technology to enable increased access to space due to reduced need for chemical propellant and enhanced speeds._x000D_ _x000D_ This SBIR Phase I project develops and tests a prototype engine by verifying the creation of electromagnetically driven propulsion. By utilizing a complex dielectric material as the environment where electromagnetic energy is introduced, the proof-of-concept engine will verify that the weak and strong force conditions are not violated and that a positive energy density can initiate nanoscopic distortions, to demonstrate novel electromagnetic propulsion in the form of further scalable engines.A number of researchers have begun building upon the work of Albert Einstein’s general relativity theory and now Miguel Alcubierre’s metric that suggests that a vessel can be propelled by selective distortion. Two key goals are the development and implementation of the complex dielectric material, and the determinization of the radio frequency power required to achieve sufficient propulsion. The project approach will include: (a) mathematical modeling, (b) comprehensive simulations of different embodiments of the approach, (c) experimental verification of nanoscopic distortions using an established laser interferometry approach, and (d) design and testing of the prototype propulsion engine. Beyond the initial prototype, the next stages include an optimization of the power/distortion metrics, association of the distortion to thrust, and maximization of the thrust to weight ratio.Ultimately, this research is expected to lead to enhanced electric propulsion that will be applicable initially to satellites, but ultimately, to a wide range of on earth and off planet propulsion._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
SP
Solicitation Number
NSF 23-515
Status
(Complete)
Last Modified 10/6/23
Period of Performance
9/1/23
Start Date
8/31/24
End Date
Funding Split
$272.8K
Federal Obligation
$0.0
Non-Federal Obligation
$272.8K
Total Obligated
Activity Timeline
Transaction History
Modifications to 2318600
Additional Detail
Award ID FAIN
2318600
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
EN39YN5HNRP1
Awardee CAGE
6U3G7
Performance District
TX-27
Senators
John Cornyn
Ted Cruz
Ted Cruz
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $272,800 | 100% |
Modified: 10/6/23