2311379
Project Grant
Overview
Grant Description
Sbir Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects -This small business innovation research (SBIR) Phase I project will enable a novel class of in-space proximity operations. This research has the potential not only to sustain and improve space operations, but also to strengthen national security and result in a thriving economy in space.
The expected advances include sophisticated capabilities for satellite inspection, repair/upgrade, end-of-life servicing, debris remediation, and even manufacturing and assembly operations. This project's emphasis on the safety, robustness, and autonomy of missions also ultimately paves the way for safer human spaceflight operations and contributes to vital areas like debris mitigation and collision avoidance. This effort also extends to the exploration of frontier technologies such as asteroid mining.
This project's approach creates commercial opportunities and unlocks the in-orbit servicing, assembly, and manufacturing value chain. This SBIR Phase I project will synthesize neural Lyapunov functions, which can be integrated into filter schemes for any type of control system that accepts state feedback from multi-sensor measurements. The primary objective of this study is to enable the inspection and capture of uncooperative, uncontrolled, and unprepared objects.
This ability is achieved by fusing data from multiple sensors and applying barrier functions, rooted in neural Lyapunov theory, to ensure safety within actuation limits and state constraints during the docking and 'combined stack' phases (i.e., when a servicer is docked with a client spacecraft). Furthermore, this technology developed path planning algorithms that use real-time optical measurements to account for the detumbling rates of client satellites, ensuring safer inspection and docking maneuvers.
These steps are critical for ensuring safe autonomous operations during the docking phase and combined stack maneuvers. The final outcome of this research is to develop a mission design, analysis, and planning tool to help operators account for different mission scenarios involving in-orbit proximity operations, while analyzing tradeoffs of safety assurance versus fuel optimization. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are not planned for this award.
The expected advances include sophisticated capabilities for satellite inspection, repair/upgrade, end-of-life servicing, debris remediation, and even manufacturing and assembly operations. This project's emphasis on the safety, robustness, and autonomy of missions also ultimately paves the way for safer human spaceflight operations and contributes to vital areas like debris mitigation and collision avoidance. This effort also extends to the exploration of frontier technologies such as asteroid mining.
This project's approach creates commercial opportunities and unlocks the in-orbit servicing, assembly, and manufacturing value chain. This SBIR Phase I project will synthesize neural Lyapunov functions, which can be integrated into filter schemes for any type of control system that accepts state feedback from multi-sensor measurements. The primary objective of this study is to enable the inspection and capture of uncooperative, uncontrolled, and unprepared objects.
This ability is achieved by fusing data from multiple sensors and applying barrier functions, rooted in neural Lyapunov theory, to ensure safety within actuation limits and state constraints during the docking and 'combined stack' phases (i.e., when a servicer is docked with a client spacecraft). Furthermore, this technology developed path planning algorithms that use real-time optical measurements to account for the detumbling rates of client satellites, ensuring safer inspection and docking maneuvers.
These steps are critical for ensuring safe autonomous operations during the docking phase and combined stack maneuvers. The final outcome of this research is to develop a mission design, analysis, and planning tool to help operators account for different mission scenarios involving in-orbit proximity operations, while analyzing tradeoffs of safety assurance versus fuel optimization. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF23515
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Melrose,
Massachusetts
02176-1825
United States
Geographic Scope
Single Zip Code
Orbital Services Corporation was awarded
Project Grant 2311379
worth $274,999
from National Science Foundation in February 2024 with work to be completed primarily in Melrose Massachusetts United States.
The grant
has a duration of 8 months and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
The Project Grant was awarded through grant opportunity NSF Small Business Innovation Research / Small Business Technology Transfer Phase I Programs.
SBIR Details
Research Type
SBIR Phase I
Title
SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
Abstract
This Small Business Innovation Research (SBIR) Phase I project will enable a novel class of in-space proximity operations. This research has the potential not only to sustain and improve space operations, but also to strengthen national security and result in a thriving economy in space. The expected advances include sophisticated capabilities for satellite inspection, repair/upgrade, end-of-life servicing, debris remediation, and even manufacturing and assembly operations. This project's emphasis on the safety, robustness, and autonomy of missions also ultimately paves the way for safer human spaceflight operations and contributes to vital areas like debris mitigation and collision avoidance. This effort also extends to the exploration of frontier technologies such as asteroid mining. This project's approach creates commercial opportunities and unlocks the in-orbit servicing, assembly, and manufacturing value chain.
This SBIR Phase I project will synthesize Neural Lyapunov functions, which can be integrated into filter schemes for any type of control system that accepts state feedback from multi-sensor measurements. The primary objective of this study is to enable the inspection and capture of uncooperative, uncontrolled, and unprepared objects. This ability is achieved by fusing data from multiple sensors and applying barrier functions, rooted in Neural Lyapunov theory, to ensure safety within actuation limits and state constraints during the docking and 'combined stack' phases (i.e., when a servicer is docked with a client spacecraft). Furthermore, this technology developed path planning algorithms that use real-time optical measurements to account for the detumbling rates of client satellites, ensuring safer inspection and docking maneuvers. These steps are critical for ensuring safe autonomous operations during the docking phase and combined stack maneuvers. The final outcome of this research is to develop a mission design, analysis, and planning tool to help operators account for different mission scenarios involving in-orbit proximity operations, while analyzing tradeoffs of safety assurance versus fuel optimization.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
SP
Solicitation Number
NSF 23-515
Status
(Complete)
Last Modified 2/7/24
Period of Performance
2/1/24
Start Date
10/31/24
End Date
Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2311379
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
For-Profit Organization (Other Than Small Business)
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
LQCVPKYLM1A7
Awardee CAGE
998E7
Performance District
MA-05
Senators
Edward Markey
Elizabeth Warren
Elizabeth Warren
Modified: 2/7/24