Search Prime Grants

2304549

Project Grant

Overview

Grant Description
Sbir Phase I: Micro-Electromechanical Systems (MEMS)-Based Near-Zero Power Infrared Sensors for Proximity Detection -This small business innovation research (SBIR) Phase I project seeks the development of a first-of-its-kind proximity sensor that consumes near-zero power at standby for touchless interface applications. The proximity detector is based on a proprietary micro-electromechanical systems (MEMS) infrared detector technology that is more accurate, more compact, and 100 times more power efficient than any existing infrared detector technology.

The innovation is a digitized, ultra-low power, uncooled infrared detector. The total addressable market for this proximity sensor is estimated to be ~$4.7 billion in 2023, with a serviceable obtainable market of hundreds of millions for the technology. Although the market for proximity and presence sensing is extremely broad, the team has chosen to target touchless faucets and auto sanitizer dispensers as the go-to-market applications due to the technology and market readiness.

The product and its commercialization process are expected to create societal and economic impacts in four areas including conservation of resources, hygiene promotion, and enhanced partnerships between university and industry. The intellectual merit of this project includes the first demonstration of a near-zero power proximity sensor with a wide field-of-view, tunable detection range, and temperature stability in a relevant indoor environment.

State-of-the-art sensors drain battery power continuously regardless of the presence of target signal. The team recently broke the fundamental paradigm of wasting energy in standby mode with the invention of a completely passive sensor microsystem that can detect and discriminate events of interest by exploiting only the energy contained in their specific physical signatures. Remaining challenges for chip-scale hand detection include efficiently harvesting the tiny amount of thermal energy emitted by a hand to trigger a micromechanical photo-switch while achieving a high level of immunity to background temperature changes.

A new plasmonically-enhanced, long-wave infrared absorber, a threshold tuning mechanism, and vacuum packaging are developed and expected to lead to the demonstration of a miniaturized prototype capable of reliably detecting a hand at 2-10 cm distance, while consuming less than 1 microamp current in standby mode. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are not planned for this award.
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF22551
Awarding / Funding Agency
Place of Performance
Burlington, Massachusetts 01803-5199 United States
Geographic Scope
Single Zip Code
Related Opportunity
22-551
Zepsor Technologies was awarded Project Grant 2304549 worth $275,000 from National Science Foundation in January 2024 with work to be completed primarily in Burlington Massachusetts United States. The grant has a duration of 1 year and was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.

SBIR Details

Research Type
SBIR Phase I
Title
SBIR Phase I: Micro-Electromechanical Systems (MEMS)-Based Near-Zero Power Infrared Sensors for Proximity Detection
Abstract
This Small Business Innovation Research (SBIR) Phase I project seeks the development of a first-of-its-kind proximity sensor that consumes near-zero power at standby for touchless interface applications. The proximity detector is based on a proprietary micro-electromechanical systems (MEMS) infrared detector technology that is more accurate, more compact, and 100 times more power efficient than any existing infrared detector technology. The innovation is a digitized, ultra-low power, uncooled infrared detector. The total addressable market for this proximity sensor is estimated to be ~$4.7 billion in 2023, with a serviceable obtainable market of hundreds of millions for the technology. Although the market for proximity and presence sensing is extremely broad, the team has chosen to target touchless faucets and auto sanitizer dispensers as the go-to-market applications due to the technology and market readiness. The product and its commercialization process are expected to create societal and economic impacts in four areas including conservation of resources, hygiene promotion, and enhanced partnerships between university and industry. The intellectual merit of this project includes the first demonstration of a near-zero power proximity sensor with a wide field-of-view, tunable detection range, and temperature stability in a relevant indoor environment. State-of-the-art sensors drain battery power continuously regardless of the presence of target signal. The team recently broke the fundamental paradigm of wasting energy in standby mode with the invention of a completely passive sensor microsystem that can detect and discriminate events of interest by exploiting only the energy contained in their specific physical signatures. Remaining challenges for chip-scale hand detection include efficiently harvesting the tiny amount of thermal energy emitted by a hand to trigger a micromechanical photo-switch while achieving a high level of immunity to background temperature changes. A new plasmonically-enhanced, long-wave infrared absorber, a threshold tuning mechanism, and vacuum packaging are developed and expected to lead to the demonstration of a miniaturized prototype capable of reliably detecting a hand at 2-10 cm distance, while consuming less than 1 microamp current in standby mode. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
IH
Solicitation Number
NSF 22-551

Status
(Complete)

Last Modified 1/21/24

Period of Performance
1/15/24
Start Date
12/31/24
End Date
100% Complete

Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to 2304549

Additional Detail

Award ID FAIN
2304549
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
K8WDZGAUHZF1
Awardee CAGE
8UYX4
Performance District
MA-06
Senators
Edward Markey
Elizabeth Warren
Modified: 1/21/24