2304533
Project Grant
Overview
Grant Description
SBIR Phase II: A software platform for assessment of untrusted electronics - The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase II project is to address hardware security and trust issues that are threatening the semiconductor supply chain.
Various threats exist from the design stage till the end of the life of chips, such as malicious logic insertion, intellectual property (IP) theft, reverse engineering, backdoor insertion, and information leakage from fabricated chips. Ensuring the security of the supply chain necessitates enhancing chip integrity through proactive measures starting from the design stage to distribution.
With security concerns increasingly gaining prominence in specific market segments, such as automotive, defense, and healthcare, various stakeholders, such as device manufacturers, system integrators, end users, and governments are voicing the need for a trusted semiconductor supply chain.
Using the proposed software platform, stakeholders of the chip industry will be able to address security challenges at a low cost, without needing trained experts. Furthermore, the team's tools will contribute to minimizing electronic waste generated from refabricating flawed chips and developing software patches that reduce the performance of insecure systems.
The proposed technologies will drive chip designers to prioritize enhancing chip security, ensuring competitiveness in environments where secure systems are essential.
This Small Business Innovation Research (SBIR) Phase II project seeks to address the challenge of commercial deployment of hardware security software to detect, assess, and mitigate hardware security vulnerabilities in system-on-chip (SoC) designs.
By utilizing a novel methodology, the tool converts Common Weakness Enumerations (CWEs) into a formal description of security properties, which the platform's remaining tools can interpret to identify commonly occurring errors and vulnerabilities in hardware designs. The software seamlessly integrates with major commercial electronic design automation (EDA) tool flow, enhancing the deployment of hardware security software.
The toolsets detect security issues in SoCs, including access control violations, asset leakage, and malicious logic or backdoors. The software considers security concerns in the global electronic supply chain involving untrusted entities. The team will collaborate with industry leaders to ensure widespread accessibility. Partnerships with several design companies will demonstrate the unique capabilities of the tool to analyze large designs, e.g., RISC-V processors, and detect a wide array of security vulnerabilities.
The utilization of the product will significantly enhance the Technology Readiness Level (TRL) and drive widespread adoption. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are planned for this award.
Various threats exist from the design stage till the end of the life of chips, such as malicious logic insertion, intellectual property (IP) theft, reverse engineering, backdoor insertion, and information leakage from fabricated chips. Ensuring the security of the supply chain necessitates enhancing chip integrity through proactive measures starting from the design stage to distribution.
With security concerns increasingly gaining prominence in specific market segments, such as automotive, defense, and healthcare, various stakeholders, such as device manufacturers, system integrators, end users, and governments are voicing the need for a trusted semiconductor supply chain.
Using the proposed software platform, stakeholders of the chip industry will be able to address security challenges at a low cost, without needing trained experts. Furthermore, the team's tools will contribute to minimizing electronic waste generated from refabricating flawed chips and developing software patches that reduce the performance of insecure systems.
The proposed technologies will drive chip designers to prioritize enhancing chip security, ensuring competitiveness in environments where secure systems are essential.
This Small Business Innovation Research (SBIR) Phase II project seeks to address the challenge of commercial deployment of hardware security software to detect, assess, and mitigate hardware security vulnerabilities in system-on-chip (SoC) designs.
By utilizing a novel methodology, the tool converts Common Weakness Enumerations (CWEs) into a formal description of security properties, which the platform's remaining tools can interpret to identify commonly occurring errors and vulnerabilities in hardware designs. The software seamlessly integrates with major commercial electronic design automation (EDA) tool flow, enhancing the deployment of hardware security software.
The toolsets detect security issues in SoCs, including access control violations, asset leakage, and malicious logic or backdoors. The software considers security concerns in the global electronic supply chain involving untrusted entities. The team will collaborate with industry leaders to ensure widespread accessibility. Partnerships with several design companies will demonstrate the unique capabilities of the tool to analyze large designs, e.g., RISC-V processors, and detect a wide array of security vulnerabilities.
The utilization of the product will significantly enhance the Technology Readiness Level (TRL) and drive widespread adoption. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH PHASE II (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE II", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF22552
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Gainesville,
Florida
32601
United States
Geographic Scope
Single Zip Code
Related Opportunity
22-552
Analysis Notes
Amendment Since initial award the End Date has been extended from 08/31/25 to 02/28/26 and the total obligations have increased 20% from $907,793 to $1,089,325.
Silicon Assurance was awarded
Project Grant 2304533
worth $1,089,325
from National Science Foundation in September 2023 with work to be completed primarily in Gainesville Florida United States.
The grant
has a duration of 2 years 5 months and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
STTR Phase II
Title
SBIR Phase II:A Software Platform for Assessment of Untrusted Electronics
Abstract
The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase II project is to address hardware security and trust issues that are threatening the semiconductor supply chain. Various threats exist from the design stage till the end of the life of chips, such as malicious logic insertion, intellectual property (IP) theft, reverse engineering, backdoor insertion, and information leakage from fabricated chips. Ensuring the security of the supply chain necessitates enhancing chip integrity through proactive measures starting from the design stage to distribution. With security concerns increasingly gaining prominence in specific market segments, such as automotive, defense, and healthcare, various stakeholders, such as device manufacturers, system integrators, end users, and governments are voicing the need for a trusted semiconductor supply chain. Using the proposed software platform, stakeholders of the chip industry will be able to address security challenges at a low cost, without needing trained experts. Furthermore, the team's tools will contribute to minimizing electronic waste generated from refabricating flawed chips and developing software patches that reduce the performance of insecure systems. The proposed technologies will drive chip designers to prioritize enhancing chip security, ensuring competitiveness in environments where secure systems are essential._x000D_ _x000D_ This Small Business Innovation Research (SBIR) Phase II project seeks to address the challenge of commercial deployment of hardware security softwareto detect, assess, and mitigate hardware security vulnerabilities in system-on-chip (SoC) designs. By utilizing a novel methodology, the tool converts Common Weakness Enumerations (CWEs) into a formal description of security properties, which the platform's remaining tools can interpret to identify commonly occurring errors and vulnerabilities in hardware designs. The software seamlessly integrates with major commercial electronic design automation (EDA) tool flow, enhancing the deployment of hardware security software. The toolsets detect security issues in SoCs, including access control violations, asset leakage, and malicious logic or backdoors. The software considers security concerns in the global electronic supply chain involving untrusted entities. The team will collaborate with industry leaders to ensure widespread accessibility. Partnerships with several design companies will demonstrate the unique capabilities of the tool to analyze large designs, e.g., RISC-V processors, and detect a wide array of security vulnerabilities. The utilization of the product will significantly enhance the technology readiness level (TRL) and drive widespread adoption._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
S
Solicitation Number
NSF 22-552
Status
(Ongoing)
Last Modified 1/14/25
Period of Performance
9/1/23
Start Date
2/28/26
End Date
Funding Split
$1.1M
Federal Obligation
$0.0
Non-Federal Obligation
$1.1M
Total Obligated
Activity Timeline
Transaction History
Modifications to 2304533
Additional Detail
Award ID FAIN
2304533
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
HKMYQ28JLWV8
Awardee CAGE
8HNT5
Performance District
FL-03
Senators
Marco Rubio
Rick Scott
Rick Scott
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $907,793 | 100% |
Modified: 1/14/25