2304430
Cooperative Agreement
Overview
Grant Description
Sbir Phase II: An Injectable Protein Matrix to Enhance the Stability of Autologous Fat Grafts - The broader impact of this Small Business Innovation and Research (SBIR) Phase II project will improve clinical outcomes for the thousands of patients globally who undergo craniofacial repair surgery each year. Facial disfigurement, whether congenital or acquired, can have profound physical and psychosocial implications including altered body image, reduced quality of life, and poor societal integration.
Fat grafting is one of the most rapidly growing procedures in facial reconstructive surgery due to its lack of reliance on foreign or synthetic materials, safe harvest, and minimal surgical risk. While fat grafting has potential to make groundbreaking strides in facial reconstruction, the technique is held back by unreliable volume and shape loss. Craniofacial repairs are particularly challenging for surgeons given the requirement for exquisite control of graft shape and volume.
The product supported by this proposal has the capacity to dramatically improve the shape, volume, and survivability of grafted fat. This technology has the potential to not only provide a novel and innovative option for clinicians facing challenging craniofacial cases, but success in this beachhead market will also support the rapidly growing utility of fat grafting in other procedures such as breast reconstruction, amputation site bulking, and hand/foot pad repair.
The proposed project is focused on the development and commercialization of a recombinant, protein-based biopolymer engineered from human elastin to enhance the use of fat grafting in craniofacial reconstruction. This product is one of the first materials to make use of a new paradigm in understanding protein engineering: that highly disordered proteins with defined 3D structure play key roles in the mechanical and biological activity of the body.
Using iterative design and molecular engineering of specific protein ordered and disordered domains, the team has generated a new class of biomaterials that are uniquely suited to meet the key criteria for a fat grafting support matrix including: (1) a temperature-dependent phase transition from a liquid to a moldable solid at body temperature, (2) a porous matrix that allows cellular infiltration and supports long-term viability of the tissue in vivo as well as the vascularization required for tissue viability, and (3) enhanced protein stability that allows simple use at the point-of-care with minimal modification to current clinical practice.
This Phase II project will focus on core needs for scale-up, toxicity studies, biocompatibility, and large animal efficacy evaluations in preparation for regulatory submission, clinical evaluation, and commercial approval. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are not planned for this award.
Fat grafting is one of the most rapidly growing procedures in facial reconstructive surgery due to its lack of reliance on foreign or synthetic materials, safe harvest, and minimal surgical risk. While fat grafting has potential to make groundbreaking strides in facial reconstruction, the technique is held back by unreliable volume and shape loss. Craniofacial repairs are particularly challenging for surgeons given the requirement for exquisite control of graft shape and volume.
The product supported by this proposal has the capacity to dramatically improve the shape, volume, and survivability of grafted fat. This technology has the potential to not only provide a novel and innovative option for clinicians facing challenging craniofacial cases, but success in this beachhead market will also support the rapidly growing utility of fat grafting in other procedures such as breast reconstruction, amputation site bulking, and hand/foot pad repair.
The proposed project is focused on the development and commercialization of a recombinant, protein-based biopolymer engineered from human elastin to enhance the use of fat grafting in craniofacial reconstruction. This product is one of the first materials to make use of a new paradigm in understanding protein engineering: that highly disordered proteins with defined 3D structure play key roles in the mechanical and biological activity of the body.
Using iterative design and molecular engineering of specific protein ordered and disordered domains, the team has generated a new class of biomaterials that are uniquely suited to meet the key criteria for a fat grafting support matrix including: (1) a temperature-dependent phase transition from a liquid to a moldable solid at body temperature, (2) a porous matrix that allows cellular infiltration and supports long-term viability of the tissue in vivo as well as the vascularization required for tissue viability, and (3) enhanced protein stability that allows simple use at the point-of-care with minimal modification to current clinical practice.
This Phase II project will focus on core needs for scale-up, toxicity studies, biocompatibility, and large animal efficacy evaluations in preparation for regulatory submission, clinical evaluation, and commercial approval. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH PHASE II (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE II", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF22552
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Durham,
North Carolina
27701-5010
United States
Geographic Scope
Single Zip Code
Related Opportunity
22-552
Analysis Notes
Amendment Since initial award the End Date has been extended from 08/31/25 to 02/28/27 and the total obligations have increased 71% from $979,197 to $1,673,065.
Insoma Bio was awarded
Cooperative Agreement 2304430
worth $1,673,065
from National Science Foundation in September 2023 with work to be completed primarily in Durham North Carolina United States.
The grant
has a duration of 3 years 5 months and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
SBIR Phase II
Title
SBIR Phase II:An Injectable Protein Matrix to Enhance the Stability of Autologous Fat Grafts
Abstract
The broader impact of this Small Business Innovation and Research (SBIR) Phase II Project will improve clinical outcomes for the thousands of patients globally who undergo craniofacial repair surgery each year. Facial disfigurement, whether congenital or acquired, can have profound physical and psychosocial implications including altered body image, reduced quality of life, and poor societal integration.Fat grafting is one of the most rapidly growing procedures in facial reconstructive surgery due to its lack of reliance on foreign or synthetic materials, safe harvest, and minimal surgical risk. While fat grafting has potential to make groundbreaking strides in facial reconstruction, the technique is held back by unreliable volume and shape loss. Craniofacial repairs are particularly challenging for surgeons given the requirement for exquisite control of graft shape and volume. The product supported by this proposal has the capacity to dramatically improve the shape, volume, and survivability of grafted fat. This technology has the potential to not only provide a novel and innovative option for clinicians facing challenging craniofacial cases, but success in this beachhead market will also support the rapidly growing utility of fat grafting in other procedures such as breast reconstruction, amputation site bulking, and hand/foot pad repair. _x000D_ _x000D_ The proposed project is focused on the development and commercialization of a recombinant, protein-based biopolymer engineered from human elastin to enhance the use of fat grafting in craniofacial reconstruction. This product is one of the first materials to make use of a new paradigm in understanding protein engineering: that highly disordered proteins with defined 3D structure play key roles in the mechanical and biological activity of the body. Using iterative design and molecular engineering of specific protein ordered and disordered domains, the team has generated a new class of biomaterials that are uniquely suited to meet the key criteria for a fat grafting support matrix including: (1) a temperature-dependent phase transition from a liquid to a moldable solid at body temperature, (2) a porous matrix that allows cellular infiltration and supports long-term viability of the tissue in vivo as well as the vascularization required for tissue viability, and (3) enhanced protein stability that allows simple use at the point-of-care with minimal modification to current clinical practice. This Phase II project will focus on core needs for scale-up, toxicity studies, biocompatibility, and large animal efficacy evaluations in preparation for regulatory submission, clinical evaluation, and commercial approval._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
BT
Solicitation Number
NSF 22-552
Status
(Ongoing)
Last Modified 9/18/25
Period of Performance
9/1/23
Start Date
2/28/27
End Date
Funding Split
$1.7M
Federal Obligation
$0.0
Non-Federal Obligation
$1.7M
Total Obligated
Activity Timeline
Transaction History
Modifications to 2304430
Additional Detail
Award ID FAIN
2304430
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
LF3PGT7RN6G7
Awardee CAGE
87PK7
Performance District
NC-04
Senators
Thom Tillis
Ted Budd
Ted Budd
Budget Funding
| Federal Account | Budget Subfunction | Object Class | Total | Percentage |
|---|---|---|---|---|
| Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $979,197 | 100% |
Modified: 9/18/25