Search Prime Grants

2304408

Project Grant

Overview

Grant Description
Sbir Phase I: Hypervelocity Gradient Field Fusion -The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is a more rapid lower-cost development path to a commercially attractive highly modular fusion power plant. Although early stage in its conceptual development, this technology has the potential to leapfrog past current fuel cycle models to provide cheaper, advanced aneutronic fuel systems that reduce or eliminate neutron reaction products and may also eliminate the need for tritium.

The abundance of fusion fuel from seawater could provide strategic energy security and economic security to the U.S. and allied nations by phasing out need for hostile foreign fossil fuel suppliers. The commercial impact of this project includes grid based clean fusion energy is literally could extend to a $T+ market if expanded to meet global power demand, with a market pull driven by the need for clean abundant inexpensive energy. This technology will support a wide range of science and engineering jobs, and manufacturing jobs in both the energy and aerospace industries.

This project will perform computational modeling and analytical calculations to show scientific and engineering feasibility prior to a focused follow-on experimental development program. This SBIR Phase 1 project proposes to research and develop a new, simpler, and cheaper approach to fusion energy for grid based electric power. In this approach, a small fusion fuel capsule is accelerated to 10 km/s and injected into the throat of a strong magnetic field coil where it is symmetrically crushed to ignite and burn the gaseous fusion fuel contained within.

While conceptually appealing and straightforward, some key components are partially unproven and require extensive research to show feasibility. First, the fuel capsule implosion and resulting fusion burn are not yet studied in sufficient detail to understand the potential plasma physics problems, including plasma-wall interactions, end losses, preheat, and overall energy yield and gain. Second, the novel railgun design needs development with a plasma armature and distributed power input using mass-produced moderate voltage capacitors and solid-state switches in order to achieve the estimated 10 km/s required to induce fusion and long life-time components.

Extensive computational modeling and analytical calculations and design will be performed to de-risk the concept and establish a point design for a Phase 2 experimental validation of the concept. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF22551
Awarding / Funding Agency
Place of Performance
Chantilly, Virginia 20151-2936 United States
Geographic Scope
Single Zip Code
Related Opportunity
22-551
Nearstar Fusion was awarded Project Grant 2304408 worth $265,965 from National Science Foundation in September 2023 with work to be completed primarily in Chantilly Virginia United States. The grant has a duration of 1 year and was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.

SBIR Details

Research Type
SBIR Phase I
Title
SBIR Phase I:Hypervelocity Gradient Field Fusion
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is a more rapid lower-cost development path to a commercially attractive highly modular fusion power plant. Although early stage in its conceptual development, this technology has the potential to leapfrog past current fuel cycle models to provide cheaper, advanced aneutronic fuel systems that reduce or eliminate neutron reaction products and may also eliminate the need for tritium. The abundance of fusion fuel from seawater could provide strategic energy security and economic security to the U.S. and allied nations by phasing out need for hostile foreign fossil fuel suppliers. The commercial impact of this project includes grid based clean fusion energy is literally could extend to a $T+ market if expanded to meet global power demand, with a market pull driven by the need for clean abundant inexpensive energy. This technology will support a wide range of science and engineering jobs, and manufacturing jobs in both the energy and aerospace industries. This project will perform computational modeling and analytical calculations to show scientific and engineering feasibility prior to a focused follow-on experimental development program._x000D_ _x000D_ This SBIR Phase 1 project proposes to research and develop a new, simpler, and cheaper approach to fusion energy for grid based electric power. In this approach, a small fusion fuel capsule is accelerated to 10 km/s and injected into the throat of a strong magnetic field coil where it is symmetrically crushed to ignite and burn the gaseous fusion fuel contained within. While conceptually appealing and straightforward, some key components are partially unproven and require extensive research to show feasibility. First, the fuel capsule implosion and resulting fusion burn are not yet studied in sufficient detail to understand the potential plasma physics problems, including plasma-wall interactions, end losses, preheat, and overall energy yield and gain. Second, the novel railgun design needs development with a plasma armature and distributed power input using mass-produced moderate voltage capacitors and solid-state switches in order to achieve the estimated 10 km/s required to induce fusion and long life-time components. Extensive computational modeling and analytical calculations and design will be performed to de-risk the concept and establish a point design for a Phase 2 experimental validation of the concept._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
EN
Solicitation Number
NSF 22-551

Status
(Complete)

Last Modified 9/5/23

Period of Performance
9/1/23
Start Date
8/31/24
End Date
100% Complete

Funding Split
$266.0K
Federal Obligation
$0.0
Non-Federal Obligation
$266.0K
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to 2304408

Additional Detail

Award ID FAIN
2304408
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
J91YEMJP8G65
Awardee CAGE
None
Performance District
VA-11
Senators
Mark Warner
Timothy Kaine

Budget Funding

Federal Account Budget Subfunction Object Class Total Percentage
Research and Related Activities, National Science Foundation (049-0100) General science and basic research Grants, subsidies, and contributions (41.0) $265,965 100%
Modified: 9/5/23