2304404
Project Grant
Overview
Grant Description
Sbir Phase I: Bio-Erodible Contraceptive-Releasing Implant -The broader impact of this Small Business Innovation Research (SBIR) Phase I project will be to provide a highly effective and long-acting implantable contraceptive for the 61 million American women in their childbearing years (ages 15 to 44), 70% of whom are at risk for unintended pregnancies.
Unintended pregnancies accounted for half of the total pregnancies in 2022, and over 60% of unplanned pregnancies end in abortion, with an estimated 45% of abortions being unsafe, resulting in 5-13% of all maternal fatalities.
Today, an estimated 7.5 million women aged 15-49 receive a treatment or hormonal drug via long-term subcutaneous arm implants. Once they reach the end of their lifespan, these implants must be removed, and complications can quickly arise. Not only are these procedures expensive, but they leave behind heavy bruising and scarring and some instances even require an operation for removal.
The proposed product is the world's first biodegradable contraceptive-releasing implant. The technology combines Food and Drug Administration (FDA)-approved material with a generic drug already on the market. It uses novel manufacturing methods and biodegradable materials, eliminating the need for implant removal and enabling the proper timing and therapeutic dosage. This novel delivery drug technology can be applied to different drug treatments in a sustainable and affordable manner.
This Small Business Innovation Research (SBIR) Phase I project aims to advance the future of long-acting reversible contraception by creating a biodegradable arm implant that delivers a consistent hormone dose and does not have to be surgically removed. The goal of this SBIR Phase I project is to characterize the drug delivery scaffold and demonstrate its utility. This project will de-risk the prototype to be used in pre-Investigational New Drug Application (IND) studies required by the FDA.
The Phase I strategy will be two-fold: (1) de-risking operations by finalizing the prototype after evaluating the physical and chemical properties and (2) test the long-acting contraception implant prototype in a clinically relevant biological model to provide the necessary data for a successful IND launch. Progress of this project will provide a solid foundation for advancing the biodegradable contraception product toward commercial utility.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Unintended pregnancies accounted for half of the total pregnancies in 2022, and over 60% of unplanned pregnancies end in abortion, with an estimated 45% of abortions being unsafe, resulting in 5-13% of all maternal fatalities.
Today, an estimated 7.5 million women aged 15-49 receive a treatment or hormonal drug via long-term subcutaneous arm implants. Once they reach the end of their lifespan, these implants must be removed, and complications can quickly arise. Not only are these procedures expensive, but they leave behind heavy bruising and scarring and some instances even require an operation for removal.
The proposed product is the world's first biodegradable contraceptive-releasing implant. The technology combines Food and Drug Administration (FDA)-approved material with a generic drug already on the market. It uses novel manufacturing methods and biodegradable materials, eliminating the need for implant removal and enabling the proper timing and therapeutic dosage. This novel delivery drug technology can be applied to different drug treatments in a sustainable and affordable manner.
This Small Business Innovation Research (SBIR) Phase I project aims to advance the future of long-acting reversible contraception by creating a biodegradable arm implant that delivers a consistent hormone dose and does not have to be surgically removed. The goal of this SBIR Phase I project is to characterize the drug delivery scaffold and demonstrate its utility. This project will de-risk the prototype to be used in pre-Investigational New Drug Application (IND) studies required by the FDA.
The Phase I strategy will be two-fold: (1) de-risking operations by finalizing the prototype after evaluating the physical and chemical properties and (2) test the long-acting contraception implant prototype in a clinically relevant biological model to provide the necessary data for a successful IND launch. Progress of this project will provide a solid foundation for advancing the biodegradable contraception product toward commercial utility.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Awardee
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Frisco,
Texas
75035-3637
United States
Geographic Scope
Single Zip Code
Related Opportunity
None
Hera Health Solutions was awarded
Project Grant 2304404
worth $275,000
from National Science Foundation in May 2023 with work to be completed primarily in Frisco Texas United States.
The grant
has a duration of 1 year and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
SBIR Phase I
Title
SBIR Phase I:Bio-erodible Contraceptive-Releasing Implant
Abstract
The broader impact of this Small Business Innovation Research (SBIR) Phase I project will be to provide a highly effective and long-acting implantable contraceptive for the 61 million American women in their childbearing years (ages 15 to 44), 70% of whom are at risk for unintended pregnancies. Unintended pregnancies accounted for half of the total pregnancies in 2022, and over 60% of unplanned pregnancies end in abortion, with an estimated 45% of abortions being unsafe, resulting in 5-13% of all maternal fatalities. Today, an estimated 7.5 million women aged 15–49 receive a treatment or hormonal drug via long-term subcutaneous arm implants. Once they reach the end of their lifespan, these implants must be removed, and complications can quickly arise. Not only are these procedures expensive, but they leave behind heavy bruising and scarring and some instances even require an operation for removal. The proposed product is the world’s first biodegradable contraceptive-releasing implant. The technology combinesFood and Drug Administration (FDA)-approved material with a generic drug already on the market. It uses novel manufacturing methods and biodegradable materials, eliminating the need for implant removal and enabling the proper timing and therapeutic dosage. This novel delivery drug technology can be applied to different drug treatments in a sustainable and affordable manner._x000D_ _x000D_ This Small Business Innovation Research (SBIR) Phase I project aims to advance the future of long-acting reversible contraception by creating a biodegradable arm implant that delivers a consistent hormone dose and does not have to be surgically removed. The goal of this SBIR Phase I project is to characterize the drug delivery scaffold and demonstrate its utility. This project will de-risk the prototype to be used in Pre-Investigational New Drug Applications (IND) studies required by the FDA. The Phase I strategy will be two-fold: (1) de-risking operations by finalizing the prototype after evaluating the physical and chemical properties and (2) test the long-acting contraception implant prototype in a clinically relevant biological model to provide the necessary data for a successful IND launch. Progress of this project will provide a solid foundation for advancing the biodegradable contraception product toward commercial utility._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
BM
Solicitation Number
NSF 22-551
Status
(Complete)
Last Modified 5/4/23
Period of Performance
5/1/23
Start Date
4/30/24
End Date
Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2304404
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
CDWMMXLLWG21
Awardee CAGE
83WD2
Performance District
04
Senators
John Cornyn
Ted Cruz
Ted Cruz
Representative
Patrick Fallon
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $275,000 | 100% |
Modified: 5/4/23