2304368
Project Grant
Overview
Grant Description
Sttr Phase I: Single-Chip Microfluidic Platform for Finely Controlled In Vitro Fertilization Processes - The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is that by improving the success rate of in vitro fertilization (IVF), this project will benefit assisted reproduction technology (ART) providers, infertile couples, and insurance companies. With infertility increasing globally, there is a huge potential market for ART services. However, current IVF technologies provide inadequate results and come with high costs that significantly impact both the minority of infertile couples who can afford IVF and the majority for whom the technology is priced out of reach.
The successful development of a disposable, low-cost platform automating all steps of IVF is expected to produce a manifold increase in the productivity of ART clinics by reducing the processing time demands on andrologists and embryologists as well as reducing the labor requirements for sperm separation. This will, in turn, have the effect of increasing the efficiency, capacity, and profitability of ART clinics, while lowering overall costs of IVF. Lower prices will reduce the burden on couples using ART and on their insurance companies, while increasing access to ART for lower-income populations. The technology is also expected to result in higher fertilization rates, enhancing successful IVF conception outcomes.
This Small Business Innovation Research (SBIR) Phase I project will develop an IVF-on-a-chip platform in response to the need for a cost-effective and highly controlled IVF process. Variance in operator skill levels and damage to gametes due to handling contribute to significant variability in IVF performance, with success rates averaging only around 37%. The new technology aims to remove this inconsistency by using a microfluidic platform to perform the entire IVF process in a single-chip workflow, automating and optimizing sperm selection, sperm capacitation, and egg fertilization.
The proposed platform includes a region for sperm selection, a reservoir for sperm capacitation, and a segment for egg fertilization. This project will develop a single user-friendly commercial device and optimize conditions for each step of the IVF process with bovine gametes, through rigorous analysis and optimization of the timing, flow, incubation, and media conditions. The device will be tested in mice and bovine models as a precursor to human treatment and its performance compared to traditional IVF. If successful, the fully developed platform system will fulfill the need for a simple-to-use, affordable, robust, and high-throughput sperm sample preparation for medical treatments and clinical applications, resulting in higher fertilization rates and enhanced patient outcomes.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The successful development of a disposable, low-cost platform automating all steps of IVF is expected to produce a manifold increase in the productivity of ART clinics by reducing the processing time demands on andrologists and embryologists as well as reducing the labor requirements for sperm separation. This will, in turn, have the effect of increasing the efficiency, capacity, and profitability of ART clinics, while lowering overall costs of IVF. Lower prices will reduce the burden on couples using ART and on their insurance companies, while increasing access to ART for lower-income populations. The technology is also expected to result in higher fertilization rates, enhancing successful IVF conception outcomes.
This Small Business Innovation Research (SBIR) Phase I project will develop an IVF-on-a-chip platform in response to the need for a cost-effective and highly controlled IVF process. Variance in operator skill levels and damage to gametes due to handling contribute to significant variability in IVF performance, with success rates averaging only around 37%. The new technology aims to remove this inconsistency by using a microfluidic platform to perform the entire IVF process in a single-chip workflow, automating and optimizing sperm selection, sperm capacitation, and egg fertilization.
The proposed platform includes a region for sperm selection, a reservoir for sperm capacitation, and a segment for egg fertilization. This project will develop a single user-friendly commercial device and optimize conditions for each step of the IVF process with bovine gametes, through rigorous analysis and optimization of the timing, flow, incubation, and media conditions. The device will be tested in mice and bovine models as a precursor to human treatment and its performance compared to traditional IVF. If successful, the fully developed platform system will fulfill the need for a simple-to-use, affordable, robust, and high-throughput sperm sample preparation for medical treatments and clinical applications, resulting in higher fertilization rates and enhanced patient outcomes.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Awardee
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Ithaca,
New York
14850-3232
United States
Geographic Scope
Single Zip Code
Related Opportunity
None
Zealous Research was awarded
Project Grant 2304368
worth $275,000
from National Science Foundation in August 2023 with work to be completed primarily in Ithaca New York United States.
The grant
has a duration of 1 year and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
STTR Phase I
Title
STTR Phase I:Single-Chip Microfluidic Platform for Finely Controlled In Vitro Fertilization Processes
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is that by improving the success rate of in vitro fertilization (IVF), this project will benefit assisted reproduction technology (ART) providers, infertile couples, and insurance companies. With infertility increasing globally, there is a huge potential market for ART services. However, current IVF technologies provide inadequate results and come with high costs that significantly impact both the minority of infertile couples who can afford IVF and the majority for whom the technology is priced out of reach. The successful development of a disposable, low-cost platform automating all steps of IVF is expected to produce a manifold increase in the productivity of ART clinics by reducing the processing time demands on andrologists and embryologists as well as reducing the labor requirements for sperm separation. This will, in turn, have the effect of increasing the efficiency, capacity and profitability of ART clinics, while lowering overall costs of IVF. Lower prices will reduce the burden on couples using ART and on their insurance companies, while increasing access to ART for lower-income populations. The technology is also expected to result in higher fertilization rates, enhancing successful IVF conception outcomes._x000D_ _x000D_ This Small Business Innovation Research (SBIR) Phase I project will develop an IVF-on-a-chip platform in response to the need for a cost-effective and highly controlled IVF process. Variance in operator skill levels and damage to gametes due to handling contribute to significant variability in IVF performance, with success rates averaging only around 37%. The new technology aims to remove this inconsistency by using a microfluidic platform to perform the entire IVF process in a single-chip workflow, automating and optimizing sperm selection, sperm capacitation, and egg fertilization. The proposed platform includes a region for sperm selection, a reservoir for sperm capacitation, and a segment for egg fertilization. This project will develop a single user-friendly commercial device and optimize conditions for each step of the IVF process with bovine gametes, through rigorous analysis and optimization of the timing, flow, incubation, and media conditions. The device will be tested in mice and bovine models as a precursor to human treatment and its performance compared to traditional IVF. If successful, the fully developed platform system will fulfill the need for a simple-to-use, affordable, robust, and high-throughput sperm sample preparation for medical treatments and clinical applications, resulting in higher fertilization rates and enhanced patient outcomes._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
BM
Solicitation Number
NSF 22-551
Status
(Complete)
Last Modified 8/3/23
Period of Performance
8/15/23
Start Date
7/31/24
End Date
Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2304368
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
RSN4DMTVKFQ5
Awardee CAGE
8PBB7
Performance District
NY-19
Senators
Kirsten Gillibrand
Charles Schumer
Charles Schumer
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $275,000 | 100% |
Modified: 8/3/23