2304324
Cooperative Agreement
Overview
Grant Description
Sttr Phase II: Stem Cell Delivery in Microscopic Hydrogel Droplets for Faster and More Complete Healing of Equine Tendon and Ligament Injuries - The broader impact of this Small Business Technology Transfer (STTR) Phase II project involves continued development of technology to extend the therapeutic window of cell-based tissue regeneration therapies. This technology could significantly enhance the scientific understanding of cellular therapies and enable the healing of injuries more rapidly and less invasively than current techniques.
A significant need for this technology has been identified in the competition horse market. A significant fraction (98%) of competitive horses suffers from soft tissue injuries and more than 80% of these horses develop a tendon or ligament injury. These injuries can take years to heal and are the leading cause of missed performances. Drastically reducing quality of life for the animal and often necessitating euthanasia. This is a significant emotional and financial pain-point for horse owners and veterinarians.
The technology being developed offers a solution by providing veterinarians a means of healing tendon and ligament injuries in a faster and more durable manner than currently possible, resulting in fewer missed performances, reduced need for animal euthanasia, and significantly reducing earning losses. Initial implementation of this technology in the equine market is expected to result in the subsequent commercialization of products to improve the healing of orthopedic injuries in humans.
This project addresses the slow healing and frequent reinjury of superficial digital flexor tendon (SDFT) injuries in elite equine athletes. A significant fraction (98%) of veterinarians uses stem cell injections to aid in recovery of these injuries, however, this strategy has limited efficacy due to poor viability of injected cells and short cell retention times at the site of injury. This problem is addressed by this technology to preserve and localize mesenchymal stem cells (MSCs) at an injury site through delivery in inert, injectable hydrogel microparticles.
The research objectives are twofold: 1) examine early healing metrics in an equine model of SDFT injury treated with encapsulated MSCs compared to conventional unencapsulated MSCs, and 2) examine long-term healing metrics using the same model. The goal of this research is to provide evidence of two key customer needs: faster tissue healing and more durable tissue regeneration of SDFT injuries. Functional, histological, genetic, and biomechanical metrics will be used to assess experimental outcomes and the results are anticipated to lead directly to a clinical trial in elite equine athletes.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are planned for this award.
A significant need for this technology has been identified in the competition horse market. A significant fraction (98%) of competitive horses suffers from soft tissue injuries and more than 80% of these horses develop a tendon or ligament injury. These injuries can take years to heal and are the leading cause of missed performances. Drastically reducing quality of life for the animal and often necessitating euthanasia. This is a significant emotional and financial pain-point for horse owners and veterinarians.
The technology being developed offers a solution by providing veterinarians a means of healing tendon and ligament injuries in a faster and more durable manner than currently possible, resulting in fewer missed performances, reduced need for animal euthanasia, and significantly reducing earning losses. Initial implementation of this technology in the equine market is expected to result in the subsequent commercialization of products to improve the healing of orthopedic injuries in humans.
This project addresses the slow healing and frequent reinjury of superficial digital flexor tendon (SDFT) injuries in elite equine athletes. A significant fraction (98%) of veterinarians uses stem cell injections to aid in recovery of these injuries, however, this strategy has limited efficacy due to poor viability of injected cells and short cell retention times at the site of injury. This problem is addressed by this technology to preserve and localize mesenchymal stem cells (MSCs) at an injury site through delivery in inert, injectable hydrogel microparticles.
The research objectives are twofold: 1) examine early healing metrics in an equine model of SDFT injury treated with encapsulated MSCs compared to conventional unencapsulated MSCs, and 2) examine long-term healing metrics using the same model. The goal of this research is to provide evidence of two key customer needs: faster tissue healing and more durable tissue regeneration of SDFT injuries. Functional, histological, genetic, and biomechanical metrics will be used to assess experimental outcomes and the results are anticipated to lead directly to a clinical trial in elite equine athletes.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH PHASE II (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE II", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF22552
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
College Station,
Texas
77843-3578
United States
Geographic Scope
Single Zip Code
Related Opportunity
22-552
Analysis Notes
Amendment Since initial award the End Date has been extended from 09/30/25 to 09/30/27 and the total obligations have increased 40% from $999,999 to $1,399,726.
Celldrop was awarded
Cooperative Agreement 2304324
worth $1,399,726
from National Science Foundation in October 2023 with work to be completed primarily in College Station Texas United States.
The grant
has a duration of 4 years and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
STTR Phase II
Title
STTR Phase II:Stem Cell Delivery in Microscopic Hydrogel Droplets for Faster and More Complete Healing of Equine Tendon and Ligament Injuries
Abstract
The broader impact of this Small Business Technology Transfer (STTR) Phase II project involves continued development of technology to extend the therapeutic window of cell-based tissue regeneration therapies. This technology could significantly enhance the scientific understanding of cellular therapies and enable the healing of injuries more rapidly and less invasively than current techniques. A significant need for this technology has been identified in the competition horse market. A significant fraction (98%) of competitive horses suffers from soft tissue injuries and more than 80% of these horses develop a tendon or ligament injury. These injuries can take years to heal and are the leading cause of missed performances— drastically reducing quality of life for the animal and often necessitating euthanasia. This is a significant emotional and financial pain-point for horse owners and veterinarians. The technology being developed offers a solution by providing veterinarians a means of healing tendon and ligament injuries in a faster and more durable manner than currently possible, resulting in fewer missed performances, reduced need for animal euthanasia, and significantly reducing earning losses. Initial implementation of this technology in the equine market is expected to result in the subsequent commercialization of products to improve the healing of orthopedic injuries in humans._x000D_ _x000D_ This project addresses the slow healing and frequent reinjury of superficial digital flexor tendon (SDFT) injuries in elite equine athletes. A significant fraction (98%) of veterinarians uses stem cell injections to aid in recovery of these injuries, however, this strategy has limited efficacy due to poor viability of injected cells and short cell retention times at the site of injury. This problem is addressed by this technology to preserve and localize mesenchymal stem cells (MSCs) at an injury site through delivery in inert, injectable hydrogel microparticles. The research objectives are twofold: 1) examine early healing metrics in an equine model of SDFT injury treated with encapsulated MSCs compared to conventional unencapsulated MSCs, and 2) examine long term healing metrics using the same model. The goal of this research is to provide evidence of two key customer needs: faster tissue healing and more durable tissue regeneration of SDFT injuries. Functional, histological, genetic, and biomechanical metrics will be used to assess experimental outcomes and the results are anticipated to lead directly to a clinical trial in elite equine athletes._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
PT
Solicitation Number
NSF 22-552
Status
(Ongoing)
Last Modified 9/18/25
Period of Performance
10/1/23
Start Date
9/30/27
End Date
Funding Split
$1.4M
Federal Obligation
$0.0
Non-Federal Obligation
$1.4M
Total Obligated
Activity Timeline
Transaction History
Modifications to 2304324
Additional Detail
Award ID FAIN
2304324
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
NJXGWEBDRJH5
Awardee CAGE
7XSJ8
Performance District
TX-10
Senators
John Cornyn
Ted Cruz
Ted Cruz
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $999,999 | 100% |
Modified: 9/18/25