Search Prime Grants

2304259

Cooperative Agreement

Overview

Grant Description
SBIR Phase II: Hydrogen from Hydrogen Sulfide - The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project will make a significant impact on science and technology, national emission reduction efforts, and the energy security of the United States.

The team aims to advance science by developing a low-cost and low-emission method to produce hydrogen from hydrogen sulfide, a common waste product found throughout the energy supply chain. This technology will help to reduce greenhouse gas emissions and air pollution and contribute to improving public health in communities near industrial sites that adopt this technology.

From a commercial perspective, the project has the potential to lower costs and carbon emissions of energy products made in the United States, such as hydrogen production in oil refineries. Implementing this technology would provide refineries with an onsite, low-emission source of hydrogen from waste streams, reducing costs and emissions. Ultimately, this innovation will enhance the energy security of the United States by enabling domestically produced, low-emission hydrogen energy.

This Small Business Innovation Research Phase II project proposes to develop a chemical cycle that generates hydrogen from hydrogen sulfide. This effort represents an alternative hydrogen production technology tailored to large, cost-sensitive firms. Despite the significant need to decarbonize current hydrogen production, market adoption of low-emission technologies has stalled because their cost precludes use in commodity chemicals.

This project aims to break this trend by using hydrogen sulfide, an abundant low-value waste stream, as a feedstock for a chemical cycle that generates hydrogen gas without significant greenhouse gas emissions. The project will have several technically challenging objectives including optimizing the process to deal with orders of magnitude higher hydrogen sulfide concentrations mixed with several highly reactive and corrosive impurities and researching and developing product separations from complex process mixtures.

Additionally, the project will screen materials and catalysts and prepare the process for integration into the complex structure of a modern chemical processing facility. While already validated for other markets, the experimental and modeling tasks will test the performance of the technology on refinery waste streams and prepare for larger-scale, industrial site demonstrations. It is anticipated that the completion of this project will lead directly into a refinery site demonstration plant.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH PHASE II (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE II", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF22552
Awarding / Funding Agency
Place of Performance
Beverly, Massachusetts 01915-6132 United States
Geographic Scope
Single Zip Code
Related Opportunity
22-552
Thiozen was awarded Cooperative Agreement 2304259 worth $954,542 from National Science Foundation in September 2023 with work to be completed primarily in Beverly Massachusetts United States. The grant has a duration of 2 years and was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.

SBIR Details

Research Type
SBIR Phase II
Title
SBIR Phase II:Hydrogen from Hydrogen Sulfide
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project will make a significant impact on science and technology, national emission reduction efforts, and the energy security of the United States. The team aims to advance science by developing a low-cost and low-emission method to produce hydrogen from hydrogen sulfide, a common waste product found throughout the energy supply chain. This technology will help to reduce greenhouse gas emissions and air pollution and contribute to improving public health in communities near industrial sites that adopt this technology. From a commercial perspective, the project has the potential to lower costs and carbon emissions of energy products made in the United States, such as hydrogen production in oil refineries. Implementing this technology would provide refineries with an onsite, low-emission source of hydrogen from waste streams, reducing costs and emissions. Ultimately, this innovation will enhance the energy security of the United States by enabling domestically produced, low-emission hydrogen energy._x000D_ _x000D_ This Small Business Innovation Research Phase II project proposes to develop a chemical cycle that generates hydrogen from hydrogen sulfide. This effort represents an alternative hydrogen production technology tailored to large, cost-sensitive firms. Despite the significant need to decarbonize current hydrogen production, market adoption of low-emission technologies has stalled because their cost precludes use in commodity chemicals. This project aims to break this trend by using hydrogen sulfide, an abundant low-value waste stream, as a feedstock for a chemical cycle that generates hydrogen gas without significant greenhouse gas emissions. The project will have several technically challenging objectives including optimizing the process to deal with orders of magnitude higher hydrogen sulfide concentrations mixed with several highly reactive and corrosive impurities and researching and developing product separations from complex process mixtures.Additionally, the project will screen materials and catalysts and prepare the process for integration into the complex structure of a modern chemical processing facility.While already validated for other markets, the experimental and modeling tasks will test the performance of the technology on refinery waste streams and prepare for larger-scale, industrial site demonstrations. It is anticipated that the completion of this project will lead directly into a refinery site demonstration plant._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
EN
Solicitation Number
NSF 22-552

Status
(Ongoing)

Last Modified 9/22/23

Period of Performance
9/15/23
Start Date
8/31/25
End Date
99.0% Complete

Funding Split
$954.5K
Federal Obligation
$0.0
Non-Federal Obligation
$954.5K
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to 2304259

Additional Detail

Award ID FAIN
2304259
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
RBD3WJQKJNJ9
Awardee CAGE
8LMP8
Performance District
MA-06
Senators
Edward Markey
Elizabeth Warren

Budget Funding

Federal Account Budget Subfunction Object Class Total Percentage
Research and Related Activities, National Science Foundation (049-0100) General science and basic research Grants, subsidies, and contributions (41.0) $954,542 100%
Modified: 9/22/23