2304250
Project Grant
Overview
Grant Description
SBIR Phase I: Development of an enzymatic method to produce compounds found in human milk at commercial scale - The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase I project is to assess an affordable enzymatic method for producing marketable natural compounds usually found in human milk. Once this strategy is validated, it could be implemented by domestic and industrial users.
The technology is capable of transforming the lactose in milk to highly desirable compounds. These rare and valuable compounds can help enhance growth of beneficial gut bacteria and are building blocks of human breast milk. These compounds are widely desirable to fortify infant food, where they play a role in intestinal health, supporting balanced gut microbiota, benefiting immunity, and improving cognitive brain health.
Furthermore, new research suggests that affordable technologies for food fortification containing stable bioactive natural compounds will benefit the healthy gut beyond infancy and across life stages. As such, this technology opens new business opportunities for food and dietary supplement manufacturers aiming to develop unique gut-strengthening nutrition solutions.
The proposed project will enzymatically generate compounds found in human milk, including N-acetylglucosamine (LACNAC). The research plan consists of testing the scalability of enzyme β-hexosyltransferase (BHT) production, which will be heterologously produced by K. phaffi. To validate industrial scalability, product generation, and yields from 100 L working volume bioprocessing reactors, the BHT generated will be utilized to catalyze the repeated addition of galactose to N-acetylglucosamine (GLCNAC). The products, in addition to galactooligosaccharides, will include LACNAC disaccharides, generated by sequential transgalactosylation reactions.
The recovered products will be tested in preclinical safety/toxicity studies. Data collected during this study will allow for a more precise cost-benefit analysis, which will include product yields, carbon balances, microbiome benefits, and metabolic data. Cost savings are expected from a more efficient enzymatic biosynthesis method for producing LACNAC due to BHT specificity, synthesis in one-step reactions, low-cost substrates, sustainability, and overall low environmental impact.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are planned for this award.
The technology is capable of transforming the lactose in milk to highly desirable compounds. These rare and valuable compounds can help enhance growth of beneficial gut bacteria and are building blocks of human breast milk. These compounds are widely desirable to fortify infant food, where they play a role in intestinal health, supporting balanced gut microbiota, benefiting immunity, and improving cognitive brain health.
Furthermore, new research suggests that affordable technologies for food fortification containing stable bioactive natural compounds will benefit the healthy gut beyond infancy and across life stages. As such, this technology opens new business opportunities for food and dietary supplement manufacturers aiming to develop unique gut-strengthening nutrition solutions.
The proposed project will enzymatically generate compounds found in human milk, including N-acetylglucosamine (LACNAC). The research plan consists of testing the scalability of enzyme β-hexosyltransferase (BHT) production, which will be heterologously produced by K. phaffi. To validate industrial scalability, product generation, and yields from 100 L working volume bioprocessing reactors, the BHT generated will be utilized to catalyze the repeated addition of galactose to N-acetylglucosamine (GLCNAC). The products, in addition to galactooligosaccharides, will include LACNAC disaccharides, generated by sequential transgalactosylation reactions.
The recovered products will be tested in preclinical safety/toxicity studies. Data collected during this study will allow for a more precise cost-benefit analysis, which will include product yields, carbon balances, microbiome benefits, and metabolic data. Cost savings are expected from a more efficient enzymatic biosynthesis method for producing LACNAC due to BHT specificity, synthesis in one-step reactions, low-cost substrates, sustainability, and overall low environmental impact.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. Subawards are planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF22551
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Raleigh,
North Carolina
27607-7206
United States
Geographic Scope
Single Zip Code
Related Opportunity
22-551
Mammae Biosciences was awarded
Project Grant 2304250
worth $271,443
from National Science Foundation in September 2023 with work to be completed primarily in Raleigh North Carolina United States.
The grant
has a duration of 1 year and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
SBIR Phase I
Title
SBIR Phase I:Development of an enzymatic method to produce compounds found in human milk at commercial scale
Abstract
The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase I project is to assess an affordable enzymatic method for producing marketable natural compounds usually found in human milk. Once this strategy is validated, it could be implemented by domestic and industrial users. The technology is capable of transforming the lactose in milk to highly desirable compounds. These rare and valuable compounds can help enhance growth of beneficial gut bacteria and are building blocks of human breast milk. These compounds are widely desirable to fortify infant food, where they play a role in intestinal health, supporting balanced gut microbiota, benefiting immunity, and improving cognitive brain health. Furthermore, new research suggests that affordable technologies for food fortification containing stable bioactive natural compounds will benefit the healthy gut beyond infancy and across life stages. As such, this technology opens new business opportunities for food and dietary supplement manufacturers aiming to develop unique gut-strengthening nutrition solutions. _x000D_ _x000D_ The proposed project will enzymatically generate compounds found in human milk, including N-acetylglucosamine (LacNAc). The research plan consists of testing the scalability of enzyme β-hexosyltransferase (BHT) production, which will be heterologously produced by K. phaffi. To validate industrial scalability, product generation, and yields from 100 L working volume bioprocessing reactors, the BHT generated will be utilized to catalyze the repeated addition of galactose to N-acetylglucosamine (GlcNAc). The products, in addition to galactooligosaccharides, will include LacNAc disaccharides, generated by sequential transgalactosylation reactions. The recovered products will be tested in preclinical safety/toxicity studies. Data collected during this study will allow for a more precise cost-benefit analysis, which will include product yields, carbon balances, microbiome benefits, and metabolic data. Cost savings are expected from a more efficient enzymatic biosynthesis method for producing LacNAc due to BHT specificity, synthesis in one-step reactions, low-cost substrates, sustainability, and overall low environmental impact._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
BT
Solicitation Number
NSF 22-551
Status
(Complete)
Last Modified 9/5/23
Period of Performance
9/1/23
Start Date
8/31/24
End Date
Funding Split
$271.4K
Federal Obligation
$0.0
Non-Federal Obligation
$271.4K
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2304250
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
Z9BJUCQFXWR5
Awardee CAGE
94A62
Performance District
NC-02
Senators
Thom Tillis
Ted Budd
Ted Budd
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $271,443 | 100% |
Modified: 9/5/23