Search Prime Grants

2304235

Project Grant

Overview

Grant Description
Sttr Phase I: Mechanically Controlled Drug Delivery Platform for Joint Environments - The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase I project seeks to address the strong clinical need for a single injection/dose sparing delivery system that can safely release therapeutics in the joint space over time in a controllable dosing manner for sustained symptomatic relief.

Early and efficient treatments that mitigate inflammation are becoming increasingly critical to ease the care and cost burdens associated with musculoskeletal conditions, which impact 1.71 billion people globally. The proposed platform, which can be applied to a wide variety of drugs, including small molecules, proteins, and biologics, will address the market need for improved drug delivery systems by providing a tunable drug delivery system that is responsive to different degrees of mechanical force created by different movement types.

The solution will allow for more precise delivery of drugs when and where they are needed. This feature will translate to fewer injections, fewer systemic side effects, and overall improved drug efficacy compared to current offerings, in turn providing improved patient quality of life and outcomes. The proposed mechano-activated drug delivery platform is expected to have a major impact in controlling musculoskeletal diseases by improving efficacy of Food and Drug Administration (FDA)-approved treatments and enabling new therapeutic strategies.

This Small Business Technology Transfer (STTR) Phase I project seeks to develop a force-stimulated drug delivery system that uses the body's natural physiological loading of musculoskeletal environments for controlled release of nearly any drug. The technology is based on the tunable rupture profile of proprietary mechano-activated microcapsules - translating to fewer injections, fewer systemic side effects, and overall improved drug efficacy.

Preliminary work has demonstrated the ability of the microcapsules to encapsulate and release viable biological therapeutics upon mechanical force, to provide tunable mechano-activation thresholds, and to stay and rupture within a living joint. For this Phase I project, a proof-of-concept study will be conducted to establish the feasibility of the mechano-activated microcapsule drug delivery platform in a biological joint environment.

This study will be accomplished by evaluating the anti-inflammatory therapeutic effects of Interleukin-1 Receptor Antagonist (IL-1RA), a drug with established ability to inhibit acute joint inflammation, delivered via mechano-activated microcapsules in an established equine model of Interleukin-1-Beta (IL-1Beta)-induced acute joint inflammation, in comparison to soluble formulations.

This study will provide a basis for investigation into more specific disease applications, models, and terminal outcomes where modification of the disease process over the long term can be evaluated. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF22551
Awarding / Funding Agency
Place of Performance
Philadelphia, Pennsylvania 19146-2701 United States
Geographic Scope
Single Zip Code
Related Opportunity
22-551
Analysis Notes
Amendment Since initial award the total obligations have increased 7% from $275,000 to $295,000.
Mechano Therapeutics was awarded Project Grant 2304235 worth $295,000 from National Science Foundation in June 2023 with work to be completed primarily in Philadelphia Pennsylvania United States. The grant has a duration of 1 year and was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.

SBIR Details

Research Type
STTR Phase I
Title
STTR Phase I:Mechanically Controlled Drug Delivery Platform for Joint Environments
Abstract
The broader impact/commercial potential of this Small Business Technology Transfer (STTR) Phase I project seeks to address the strong clinical need for a single injection/dose sparing delivery system that can safely release therapeutics in the joint space over time in a controllable dosing manner for sustained symptomatic relief. Early and efficient treatments that mitigate inflammation are becoming increasingly critical to ease the care and cost burdens associated with musculoskeletal conditions, which impact 1.71 billion people globally. The proposed platform, which can be applied to a wide variety of drugs, including small molecules, proteins, and biologics will address the market need for improved drug delivery systems by providing a tunable drug delivery system that is responsive to different degrees of mechanical force created by different movement types.The solution will allow for more precise delivery of drugs when and where they are needed. This feature will translate to fewer injections, fewer systemic side effects, and overall improved drug efficacy compared to current offerings, in turn providing improved patient quality of life and outcomes. The proposed mechano-activated drug delivery platform is expected to have a major impact in controlling musculoskeletal diseases by improving efficacy of Food and Drug Administration (FDA)-approved treatments and enabling new therapeutic strategies._x000D_ _x000D_ This Small Business Technology Transfer (STTR) Phase I project seeks to develop a force-stimulated drug delivery system that uses the body’s natural physiological loading of musculoskeletal environments for controlled release of nearly any drug. The technology is based on the tunable rupture profile of proprietary mechano-activated microcapsules - translating to fewer injections, fewer systemic side effects, and overall improved drug efficacy. Preliminary work has demonstrated the ability of the microcapsules to encapsulate and release viable biological therapeutics upon mechanical force, to provide tunable mechano-activation thresholds, and to stay and rupture within a living joint. For this Phase I project, a proof-of-concept study will be conducted to establish the feasibility of the mechano-activated microcapsule drug delivery platform in a biological joint environment. This study will be accomplished by evaluating the anti-inflammatory therapeutic effects of interleukin-1 receptor antagonist (IL-1Ra), a drug with established ability to inhibit acute joint inflammation, delivered via mechano-activated microcapsules in an established equine model of Interleukin-1-beta (IL-1beta)-induced acute joint inflammation, in comparison to soluble formulations. This study will provide a basis for investigation into more specific disease applications, models, and terminal outcomes where modification of the disease process over the long term can be evaluated._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
BM
Solicitation Number
NSF 22-551

Status
(Complete)

Last Modified 4/30/24

Period of Performance
6/15/23
Start Date
5/31/24
End Date
100% Complete

Funding Split
$295.0K
Federal Obligation
$0.0
Non-Federal Obligation
$295.0K
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to 2304235

Transaction History

Modifications to 2304235

Additional Detail

Award ID FAIN
2304235
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
L2R8GFHQSD74
Awardee CAGE
8ZCU7
Performance District
PA-03
Senators
Robert Casey
John Fetterman

Budget Funding

Federal Account Budget Subfunction Object Class Total Percentage
Research and Related Activities, National Science Foundation (049-0100) General science and basic research Grants, subsidies, and contributions (41.0) $275,000 100%
Modified: 4/30/24