2241921
Cooperative Agreement
Overview
Grant Description
SBIR Phase II: Focal Plane Array for Active Coherent Imaging - The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project is in developing technology that will enable the use of a 3-dimensional (3D) Light Detection and Ranging (LiDAR) system in smaller and more economical drones for mapping, surveying, and navigation.
The 3D LiDAR has important applications in environment management, forestry, land and corridor mapping, construction, land surveying, precision agriculture, powerline and infrastructure inspection, and countless other areas. The technology will bring significant economic impacts to the industries by reducing the ownership costs of a high-performance LiDAR system and the drone that can carry this system.
The reduction of the entry-cost for LiDAR applications with drones will, in turn, benefit small businesses to perform smaller-scale projects in mapping and surveying. Other than drone-based applications, the innovation is poised to significantly reduce the costs and provide seamless integration of 3D LiDAR sensing in self-driving vehicles and other industrial applications including robotics, smart city infrastructure, surveillance, and security, as well as consumer applications like 3D sensing for augmented reality.
The numerous applications enabled by the proposed project not only will help increase the economic competitiveness of the U.S. but also improve quality of life, security, and safety. The proposed project aims at developing a high-performance, compact, and lightweight 3D LiDAR sensor to meet the increasing needs of drone-based, high-precision LiDAR applications.
Current commercial high-performance drone-LiDAR systems are notorious for their high cost, bulkiness, heavy weight, and high power-consumption. Current drone-LiDAR systems are also prone to mechanical damage. These issues inevitably shorten the drone flight time, inhibit the installations of high-performance LiDAR systems on the more common consumer-grade small drones, and increase the operation costs.
The proposed LiDAR sensor will mitigate all of these issues by leveraging a high-performance coherent LiDAR detection approach with silicon photonics technology in an innovative design. The coherent LiDAR detection method allows more sensitive measurements than the method used in most existing LiDAR systems. The technology achieves a longer detection range and larger number of returns given the same laser power.
Based on highly scalable complementary metal-oxide-semiconductor (CMOS)-compatible silicon photonics technology, the LiDAR sensor is able to achieve high spatial resolution in a compact size. The entire system will have a form-factor similar to a palm-sized compact camera commonly used for photogrammetry in small drones.
The solution requires no mechanical mechanisms for beam scanning nor high-precision alignment of optical components, making the system inherently durable, compact, lightweight, and power efficient.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
The 3D LiDAR has important applications in environment management, forestry, land and corridor mapping, construction, land surveying, precision agriculture, powerline and infrastructure inspection, and countless other areas. The technology will bring significant economic impacts to the industries by reducing the ownership costs of a high-performance LiDAR system and the drone that can carry this system.
The reduction of the entry-cost for LiDAR applications with drones will, in turn, benefit small businesses to perform smaller-scale projects in mapping and surveying. Other than drone-based applications, the innovation is poised to significantly reduce the costs and provide seamless integration of 3D LiDAR sensing in self-driving vehicles and other industrial applications including robotics, smart city infrastructure, surveillance, and security, as well as consumer applications like 3D sensing for augmented reality.
The numerous applications enabled by the proposed project not only will help increase the economic competitiveness of the U.S. but also improve quality of life, security, and safety. The proposed project aims at developing a high-performance, compact, and lightweight 3D LiDAR sensor to meet the increasing needs of drone-based, high-precision LiDAR applications.
Current commercial high-performance drone-LiDAR systems are notorious for their high cost, bulkiness, heavy weight, and high power-consumption. Current drone-LiDAR systems are also prone to mechanical damage. These issues inevitably shorten the drone flight time, inhibit the installations of high-performance LiDAR systems on the more common consumer-grade small drones, and increase the operation costs.
The proposed LiDAR sensor will mitigate all of these issues by leveraging a high-performance coherent LiDAR detection approach with silicon photonics technology in an innovative design. The coherent LiDAR detection method allows more sensitive measurements than the method used in most existing LiDAR systems. The technology achieves a longer detection range and larger number of returns given the same laser power.
Based on highly scalable complementary metal-oxide-semiconductor (CMOS)-compatible silicon photonics technology, the LiDAR sensor is able to achieve high spatial resolution in a compact size. The entire system will have a form-factor similar to a palm-sized compact camera commonly used for photogrammetry in small drones.
The solution requires no mechanical mechanisms for beam scanning nor high-precision alignment of optical components, making the system inherently durable, compact, lightweight, and power efficient.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH PHASE II (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE II", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF22552
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Albuquerque,
New Mexico
87102-6401
United States
Geographic Scope
Single Zip Code
Related Opportunity
22-552
Analysis Notes
Amendment Since initial award the End Date has been extended from 05/31/25 to 11/30/26 and the total obligations have increased 20% from $1,000,000 to $1,199,999.
OAM Photonics was awarded
Cooperative Agreement 2241921
worth $1,199,999
from National Science Foundation in June 2023 with work to be completed primarily in Albuquerque New Mexico United States.
The grant
has a duration of 3 years 5 months and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
SBIR Phase II
Title
SBIR Phase II:Focal Plane Array for Active Coherent Imaging
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project is in developing technology that will enable the use of a 3-dimensional (3D) light detection and ranging (LiDAR) system in smaller and more economical drones for mapping, surveying, and navigation.The 3D LiDAR has important applications in environment management, forestry, land and corridor mapping, construction, land surveying, precision agriculture, powerline and infrastructure inspection, and countless other areas. The technology will bring significant economic impacts to the industries by reducing the ownership costs of a high-performance LiDAR system and the drone that can carry this system. The reduction of the entry-cost for LiDAR applications with drones will in turn benefit small businesses to perform smaller-scale projects in mapping and surveying. Other than drone-based applications, the innovation is poised to significantly reduce the costs and provide seamless integration of 3D LiDAR sensing in self-driving vehicles and other industrial applications including robotics, smart city infrastructure, surveillance, and security, as well as consumer applications like 3D sensing for augmented reality. The numerous applications enabled by the proposed project not will only help increase the economic competitiveness of the U.S. but also improve quality of life, security and safety._x000D_
_x000D_
The proposed project aims at developing a high-performance, compact, and light-weight 3D LiDAR sensor to meet the increasing needs of drone-based, high-precision LiDAR applications. Current commercial high-performance drone-LiDAR systems are notorious for their high cost, bulkiness, heavy weight, and high power-consumption.Current drone-LiDAR systems are also prone to mechanical damage. These issues inevitably shorten the drone flight time, inhibit the installations of high-performance LiDAR systems on the more common consumer-grade small drones, and increase the operation costs. The proposed LiDAR sensor will mitigate all of these issues by leveraging a high-performance coherent LiDAR detection approach with silicon photonics technology in an innovative design. The coherent LiDAR detection method allows more sensitive measurements than the method used in most existing LiDAR systems. The technology achieves a longer detection range and larger number of returns given the same laser power. Based on highly scalable Complementary Metal-Oxide-Semiconductor (CMOS)-compatible silicon photonics technology, the LiDAR sensor is able to achieve high spatial resolution in a compact size. The entire system will have a form-factor similar to a palm-sized compact camera commonly used for photogrammetry in small drones. The solution requires no mechanical mechanisms for beam scanning nor high-precision alignment of optical components, making the system inherently durable, compact, lightweight, and power efficient._x000D_
_x000D_
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
PH
Solicitation Number
NSF 22-552
Status
(Ongoing)
Last Modified 8/12/25
Period of Performance
6/1/23
Start Date
11/30/26
End Date
Funding Split
$1.2M
Federal Obligation
$0.0
Non-Federal Obligation
$1.2M
Total Obligated
Activity Timeline
Transaction History
Modifications to 2241921
Additional Detail
Award ID FAIN
2241921
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
R5LKNWKFPSB1
Awardee CAGE
8B5J7
Performance District
NM-01
Senators
Martin Heinrich
Ben Luján
Ben Luján
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $1,000,000 | 100% |
Modified: 8/12/25