2233286
Cooperative Agreement
Overview
Grant Description
SBIR Phase II: Formulation of a mRNA-based therapy for CTLN1 by inverse flash nanoprecipitation - The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project will be to enhance American and global healthcare through new technologies enabling clinical translation of gene therapies.
One of the major unmet needs within biotechnology is a delivery technology that enables gene therapies to reach the desired organ within the body without raising an immune response. Recent advances have unlocked many potential treatments for genetic diseases, but their use in the clinic is hampered by a lack of delivery technologies. This project will validate a new non-viral platform for this purpose and apply it to commercial use in a rare disease indication.
The project provides a gene replacement therapy for urea cycle disorder patients, who are currently treated using a combination of drugs and diet that shows limited effectiveness. Their regimens require up to 40 pills per day in combination with incredibly strict dietary control to avoid consuming too much protein. Even still, elevated blood ammonia results in neurological damage and high neonatal mortality. Caregivers face significant burdens of care to monitor diet, supplements, and medications. A gene replacement therapy that provides true disease correction would be transformational for patients and caregivers.
The proposed project will result in the development of a gene replacement therapy that can be safely and repeatedly dosed to patients suffering from the class of rare diseases known as urea cycle disorders. These patients lack an enzyme of the urea cycle that cannot be delivered exogenously. An alternative therapeutic approach is to deliver instructions, in the form of nucleic acids such as mRNA, for cells in the body to make the missing enzyme.
The commercially proven methods of doing this - lipid nanoparticles and viral vectors - fail in this indication due to toxicity, immunogenicity, and dosing challenges. The platform developed in this project provides a means to overcome these limitations using a non-viral, polymer-lipid hybrid formulation.
The scope of the project includes both pharmacology and toxicology studies in rodent models of the urea cycle disorder citrullinemia type I, that will produce a pre-clinical data package supporting further development. Successful project execution will include formulation optimization and pre-clinical demonstration of disease correction (reduced blood ammonia levels) with a strong safety profile.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
One of the major unmet needs within biotechnology is a delivery technology that enables gene therapies to reach the desired organ within the body without raising an immune response. Recent advances have unlocked many potential treatments for genetic diseases, but their use in the clinic is hampered by a lack of delivery technologies. This project will validate a new non-viral platform for this purpose and apply it to commercial use in a rare disease indication.
The project provides a gene replacement therapy for urea cycle disorder patients, who are currently treated using a combination of drugs and diet that shows limited effectiveness. Their regimens require up to 40 pills per day in combination with incredibly strict dietary control to avoid consuming too much protein. Even still, elevated blood ammonia results in neurological damage and high neonatal mortality. Caregivers face significant burdens of care to monitor diet, supplements, and medications. A gene replacement therapy that provides true disease correction would be transformational for patients and caregivers.
The proposed project will result in the development of a gene replacement therapy that can be safely and repeatedly dosed to patients suffering from the class of rare diseases known as urea cycle disorders. These patients lack an enzyme of the urea cycle that cannot be delivered exogenously. An alternative therapeutic approach is to deliver instructions, in the form of nucleic acids such as mRNA, for cells in the body to make the missing enzyme.
The commercially proven methods of doing this - lipid nanoparticles and viral vectors - fail in this indication due to toxicity, immunogenicity, and dosing challenges. The platform developed in this project provides a means to overcome these limitations using a non-viral, polymer-lipid hybrid formulation.
The scope of the project includes both pharmacology and toxicology studies in rodent models of the urea cycle disorder citrullinemia type I, that will produce a pre-clinical data package supporting further development. Successful project execution will include formulation optimization and pre-clinical demonstration of disease correction (reduced blood ammonia levels) with a strong safety profile.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH PHASE II (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE II", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF22552
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Princeton,
New Jersey
08540-6608
United States
Geographic Scope
Single Zip Code
Related Opportunity
22-552
Analysis Notes
Amendment Since initial award the End Date has been extended from 06/30/25 to 12/31/26 and the total obligations have increased 50% from $1,000,000 to $1,500,000.
Optimeos Life Sciences was awarded
Cooperative Agreement 2233286
worth $1,500,000
from National Science Foundation in July 2023 with work to be completed primarily in Princeton New Jersey United States.
The grant
has a duration of 3 years 5 months and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
SBIR Phase II
Title
SBIR Phase II:Formulation of a mRNA-Based Therapy for CTLN1 by Inverse Flash NanoPrecipitation
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase II project will be to enhance American and global healthcare through new technologies enabling clinical translation of gene therapies. One of the major unmet needs within biotechnology is a delivery technology that enables gene therapies to reach the desired organ within the body without raising an immune response. Recent advances have unlocked many potential treatments for genetic diseases, but their use in the clinic is hampered by a lack of delivery technologies. This project will validate a new non-viral platform for this purpose and apply it to commercial use in a rare disease indication. The project provides a gene replacement therapy for Urea Cycle Disorder patients, who are currently treated using a combination of drugs and diet that shows limited effectiveness. Their regimens require up to 40 pills per day in combination with incredibly strict dietary control to avoid consuming too much protein. Even still, elevated blood ammonia results in neurological damage and high neonatal mortality. Caregivers face significant burdens of care to monitor diet, supplements, and medications. A gene replacement therapy that provides true disease correction would be transformational for patients and caregivers. _x000D_
_x000D_
The proposed project will result in the development of a gene replacement therapy that can be safely and repeatedly dosed to patients suffering from the class of rare diseases known as Urea Cycle Disorders. These patients lack an enzyme of the urea cycle that cannot be delivered exogenously. An alternative therapeutic approach is to deliver instructions, in the form of nucleic acids such as mRNA, for cells in the body to make the missing enzyme. The commercially proven methods of doing this – lipid nanoparticles and viral vectors – fail in this indication due to toxicity, immunogenicity, and dosing challenges. The platform developed in this project provides a means to overcome these limitations using a non-viral, polymer-lipid hybrid formulation. The scope of the project includes both pharmacology and toxicology studies in rodent models of the Urea Cycle Disorder Citrullinemia Type I, that will produce a pre-clinical data package supporting further development. Successful project execution will include formulation optimization and pre-clinical demonstration of disease correction (reduced blood ammonia levels) with a strong safety profile._x000D_
_x000D_
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
PT
Solicitation Number
NSF 22-552
Status
(Ongoing)
Last Modified 8/12/25
Period of Performance
7/15/23
Start Date
12/31/26
End Date
Funding Split
$1.5M
Federal Obligation
$0.0
Non-Federal Obligation
$1.5M
Total Obligated
Activity Timeline
Transaction History
Modifications to 2233286
Additional Detail
Award ID FAIN
2233286
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
LSBKUFPKAHW7
Awardee CAGE
674V9
Performance District
NJ-12
Senators
Robert Menendez
Cory Booker
Cory Booker
Budget Funding
| Federal Account | Budget Subfunction | Object Class | Total | Percentage |
|---|---|---|---|---|
| Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $1,000,000 | 100% |
Modified: 8/12/25