2233272
Project Grant
Overview
Grant Description
Sttr Phase I: Manufacturing Nickel and Cobalt-Free Cathodes for High-Energy and Low-Cost Lithium-Ion Batteries - The broader/commercial impact of this Small Business Technology Transfer (STTR) Phase I project is to facilitate the adoption of battery electric vehicles in the US by securing the supply chain, reducing battery cathode cost, and enhancing US-innovated battery manufacturing.
This project will address the several challenges facing the US battery industry. First, the state-of-the-art lithium-ion battery cathode materials use scarce and expensive elements, such as cobalt and nickel. Second, the US battery manufacturing capability needs to be improved in order to meet the rapidly growing demand, cathode materials production is especially important. Third, current lithium-ion battery cathode manufacturing involves costly liquid and gaseous waste management.
The proposed technology will create fundamentally new ways to produce next-generation cathodes for American electric vehicles. This project can significantly impact the battery field since the proposed new cathode technology is expected to result in a major cost reduction per electric vehicle battery pack. Advances in novel cathode chemistries and manufacturing processes offer new opportunities for the US to establish the leadership in cathode innovation and manufacturing.
This project develops a fundamentally disruptive technology to enable the use of low-cost, cobalt- and nickel-free oxide cathodes in high-energy lithium-ion batteries. The dry manufacturing technology will be uniquely combined with new materials development to enable stable battery cycling with a 700 Wh/kg specific energy at the cathode materials level. The technology is compatible with mainstream lithium-ion electrolytes and anodes, which makes full-cell integration feasible and practical at the commercial scale.
The research and development objectives include: (1) design, manufacturing, and characterization of new cobalt- and nickel-free oxide cathode chemistries with abundant and low-cost elements, (2) develop cathode electrodes with controllable physical properties based on an all-dry electrode preparation process, and (3) integrate the graphite anode and electrochemical measurements under various practical testing conditions.
This project proposes to combine materials synthesis and electrode powder mixing and to avoid the costly materials storage and handling between cathode powder production and cathode electrode manufacturing. The successful development of the technology will enable low-cost, high-energy, dry-processed, and US-manufactured battery cathodes for more affordable and reliable electric vehicle batteries.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
This project will address the several challenges facing the US battery industry. First, the state-of-the-art lithium-ion battery cathode materials use scarce and expensive elements, such as cobalt and nickel. Second, the US battery manufacturing capability needs to be improved in order to meet the rapidly growing demand, cathode materials production is especially important. Third, current lithium-ion battery cathode manufacturing involves costly liquid and gaseous waste management.
The proposed technology will create fundamentally new ways to produce next-generation cathodes for American electric vehicles. This project can significantly impact the battery field since the proposed new cathode technology is expected to result in a major cost reduction per electric vehicle battery pack. Advances in novel cathode chemistries and manufacturing processes offer new opportunities for the US to establish the leadership in cathode innovation and manufacturing.
This project develops a fundamentally disruptive technology to enable the use of low-cost, cobalt- and nickel-free oxide cathodes in high-energy lithium-ion batteries. The dry manufacturing technology will be uniquely combined with new materials development to enable stable battery cycling with a 700 Wh/kg specific energy at the cathode materials level. The technology is compatible with mainstream lithium-ion electrolytes and anodes, which makes full-cell integration feasible and practical at the commercial scale.
The research and development objectives include: (1) design, manufacturing, and characterization of new cobalt- and nickel-free oxide cathode chemistries with abundant and low-cost elements, (2) develop cathode electrodes with controllable physical properties based on an all-dry electrode preparation process, and (3) integrate the graphite anode and electrochemical measurements under various practical testing conditions.
This project proposes to combine materials synthesis and electrode powder mixing and to avoid the costly materials storage and handling between cathode powder production and cathode electrode manufacturing. The successful development of the technology will enable low-cost, high-energy, dry-processed, and US-manufactured battery cathodes for more affordable and reliable electric vehicle batteries.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Awardee
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Blacksburg,
Virginia
24060-6704
United States
Geographic Scope
Single Zip Code
Related Opportunity
None
Fermi Energy was awarded
Project Grant 2233272
worth $275,000
from National Science Foundation in March 2023 with work to be completed primarily in Blacksburg Virginia United States.
The grant
has a duration of 1 year and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
STTR Phase I
Title
STTR Phase I:Manufacturing nickel and cobalt-free cathodes for high-energy and low-cost lithium-ion batteries
Abstract
The broader/commercial impact of this Small Business Technology Transfer (STTR) Phase I project is to facilitate the adoption of battery electric vehicles in the US by securing the supply chain, reducing battery cathode cost, and enhancing US-innovated battery manufacturing. This project will address the several challenges facing the US battery industry.First, the state-of-the-art lithium-ion battery cathode materials use scarce and expensive elements, such as cobalt and nickel.Second, the US battery manufacturing capability needs to be improved in order to meet the rapidly growing demand, cathode materials production is especially important.Third, current lithium-ion battery cathode manufacturing involves costly liquid and gaseous waste management. The proposed technology will create fundamentally new ways to produce next-generation cathodes for American electric vehicles. This project can significantly impact the battery field since the proposed new cathode technology is expected to result in a major cost reduction per electric vehicle battery pack. Advances in novel cathode chemistries and manufacturing processes offer new opportunities for the US to establish the leadership in cathode innovation and manufacturing. _x000D_ _x000D_ This project develops a fundamentally disruptive technology to enable the use of low-cost, cobalt- and nickel-free oxide cathodes in high-energy lithium-ion batteries. The dry manufacturing technology will be uniquely combined with new materials development to enable stable battery cycling with a 700 Wh/kg specific energy at the cathode materials level. The technology is compatible with mainstream lithium-ion electrolytes and anodes, which makes full-cell integration feasible and practical at the commercial scale. The research and development objectives include: (1) design, manufacturing, and characterization of new cobalt- and nickel-free oxide cathode chemistries with abundant and low-cost elements, (2) develop cathode electrodes with controllable physical properties based on an all-dry electrode preparation process, and (3) integrate the graphite anode and electrochemical measurements under various practical testing conditions. This project proposes to combine materials synthesis and electrode powder mixing and to avoid the costly materials storage and handling between cathode powder production and cathode electrode manufacturing. The successful development of the technology will enable low-cost, high-energy, dry-processed, and US-manufactured battery cathodes for more affordable and reliable electric vehicle batteries._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
M
Solicitation Number
NSF 22-551
Status
(Complete)
Last Modified 3/2/23
Period of Performance
3/1/23
Start Date
2/29/24
End Date
Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2233272
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
R5XZBDRPART9
Awardee CAGE
09F91
Performance District
Not Applicable
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $275,000 | 100% |
Modified: 3/2/23