2233170
Project Grant
Overview
Grant Description
Sbir Phase I: Carbon-Free Hydrogen Production by Plasma Dissociation of Hydrogen Sulfide - The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is connected to creating a large-scale source of low production cost, carbon-free hydrogen. This hydrogen will be produced from hydrogen sulfide (H2S).
Nearly 8 million tons of H2S are processed by the energy industry each year. Sulfur recovery units (SRUs) are used to safely manage H2S. SRUs utilize an old Claus process and are unprofitable because of high capital and operational costs, in addition to low revenues due to sulfur overproduction.
In contrast to the Claus process, H2S plasma dissociation recovers sulfur and hydrogen, whereby the sulfur can be used for oil desulfurization or as a commercial product. Dissociating H2S in plasma and producing hydrogen will make SRUs profitable and will reduce the industry's carbon dioxide emissions.
This technology will diminish societal needs for fossil fuel production and increase energy security during the transition to renewable energy. The team will develop a numerical model for the high-speed, two-phase, vortex flows that will have a general academic interest and can be applied in the chemical and energy industries.
This SBIR Phase I project proposes to develop a plasma technology for the dissociation of H2S to sulfur and hydrogen, replacing Claus plants in sulfur recovery units. Phase I will focus on three innovations that are critical for the H2S dissociation development program.
The major goal is the high energy efficiency expressed as specific energy requirement 1.5 KWH/M3. This goal will be achieved by a special design of the arc plasmatron with an extremely high speed of gas rotation that will result in hydrogen-sulfur separation in the reaction zone, the chemical equilibrium shift, and the internal recuperation of the sulfur clusterization and condensation energy.
The second innovation will be the development of a gas-dynamic and chemical-kinetic model for the numerical simulation of two-phase (gas and sulfur particles) vortex flows with a high speed of rotation. Third, the stability of the cathode and plasmatron operation will be tested with different gas mixtures that imitate the composition of real flows at refineries.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Nearly 8 million tons of H2S are processed by the energy industry each year. Sulfur recovery units (SRUs) are used to safely manage H2S. SRUs utilize an old Claus process and are unprofitable because of high capital and operational costs, in addition to low revenues due to sulfur overproduction.
In contrast to the Claus process, H2S plasma dissociation recovers sulfur and hydrogen, whereby the sulfur can be used for oil desulfurization or as a commercial product. Dissociating H2S in plasma and producing hydrogen will make SRUs profitable and will reduce the industry's carbon dioxide emissions.
This technology will diminish societal needs for fossil fuel production and increase energy security during the transition to renewable energy. The team will develop a numerical model for the high-speed, two-phase, vortex flows that will have a general academic interest and can be applied in the chemical and energy industries.
This SBIR Phase I project proposes to develop a plasma technology for the dissociation of H2S to sulfur and hydrogen, replacing Claus plants in sulfur recovery units. Phase I will focus on three innovations that are critical for the H2S dissociation development program.
The major goal is the high energy efficiency expressed as specific energy requirement 1.5 KWH/M3. This goal will be achieved by a special design of the arc plasmatron with an extremely high speed of gas rotation that will result in hydrogen-sulfur separation in the reaction zone, the chemical equilibrium shift, and the internal recuperation of the sulfur clusterization and condensation energy.
The second innovation will be the development of a gas-dynamic and chemical-kinetic model for the numerical simulation of two-phase (gas and sulfur particles) vortex flows with a high speed of rotation. Third, the stability of the cathode and plasmatron operation will be tested with different gas mixtures that imitate the composition of real flows at refineries.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Awardee
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Warminster,
Pennsylvania
18974-1195
United States
Geographic Scope
Single Zip Code
Related Opportunity
None
Redshift Energy was awarded
Project Grant 2233170
worth $275,000
from National Science Foundation in August 2023 with work to be completed primarily in Warminster Pennsylvania United States.
The grant
has a duration of 1 year and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
SBIR Phase I
Title
SBIR Phase I:Carbon-Free Hydrogen Production by Plasma Dissociation of Hydrogen Sulfide
Abstract
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is connected to creating a large-scale source of low production cost, carbon-free hydrogen. This hydrogen will be produced from hydrogen sulfide (H2S). Nearly 8 million tons of H2S are processed by the energy industry each year. Sulfur recovery units (SRUs) are used to safely manage H2S. SRUs utilize an old Claus process and are unprofitable because of high capital and operational costs, in addition to low revenues due to sulfur overproduction. In contrast to the Claus process, H2S plasma dissociation recovers sulfur and hydrogen, whereby the sulfur can be used for oil desulfurization or as a commercial product.Dissociating H2S in plasma and producing hydrogen will make SRUs profitable and will reduce the industry's carbon dioxide emissions. This technology will diminish societal needs for fossil fuel production and increase energy security during the transition to renewable energy. The team will develop a numerical model for the high-speed, two-phase, vortex flows that will have a general academic interest and can be applied in the chemical and energy industries._x000D_ _x000D_ This SBIR Phase I project proposes to develop a plasma technology for the dissociation of H2S to sulfur and hydrogen, replacing Claus plants in Sulfur Recovery Units. Phase I will focus on three innovations that are critical for the H2S dissociation development program. The major goal is the high energy efficiency expressed as Specific Energy Requirement 1.5 kWh/m3. This goal will be achieved by a special design of the arc plasmatron with an extremely high speed of gas rotation that will result in hydrogen-sulfur separation in the reaction zone, the chemical equilibrium shift, and the internal recuperation of the sulfur clusterization and condensation energy. The second innovation will be the development of a gas-dynamic and chemical-kinetic model for the numerical simulation of two-phase (gas and sulfur particles) vortex flows with a high speed of rotation. Third, the stability of the cathode and plasmatron operation will be tested with different gas mixtures that imitate the composition of real flows at refineries._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
EN
Solicitation Number
NSF 22-551
Status
(Complete)
Last Modified 8/3/23
Period of Performance
8/1/23
Start Date
7/31/24
End Date
Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2233170
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
ZFMJMR6LG4S8
Awardee CAGE
8EHH5
Performance District
PA-01
Senators
Robert Casey
John Fetterman
John Fetterman
Budget Funding
| Federal Account | Budget Subfunction | Object Class | Total | Percentage |
|---|---|---|---|---|
| Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $275,000 | 100% |
Modified: 8/3/23