2233096
Project Grant
Overview
Grant Description
Sttr Phase I: Curved Volume Phase Holographic Gratings: Efficient and High-Resolution Hyperspectral Imaging - This small business technology transfer Phase I project will develop a completely new class of spectrometer, the spherical transmission grating spectrometer (STGS), which utilizes curved volume phase holographic (VPH) gratings coupled with a spherical mirror to deliver aberration-corrected spectral images over the full field of view.
The market is projected to reach $35.8 billion by 2026, at an annual growth rate of 18.4%. End-users range from astronomy to agriculture, manufactures, and third-party integrators (e.g., drone companies). Current technologies are too costly or do not possess the size, weight, and power (SWAP) properties required for practical value delivery. Furthermore, in low light conditions or in applications that require aberration-free high-resolution images (e.g., defense-based imaging), current technologies on the market cannot meet customer requirements. This solution promises to solve these issues.
Agriculture and defense are the two leading market applications and represent the primary entry points for this technology. The intellectual merit of this project will enable a transformation in the spectroscopy and the hyperspectral imaging (HSI) market by enabling low-cost, superior image quality spectrographs. The product will be a novel spherical transmission grating spectrometer (STGS) for hyperspectral imaging.
Preliminary STGS designs, invented in a collaboration with astronomers at the University of North Carolina Chapel Hill and Southern African Large Telescope employ a combination of a spherical mirror and a spherically-curved transmission grating to deliver fully aberration-corrected spectral images with no field distortion. Challenges to their production are the design, fabrication, and testing of this spherical volume phase holographic (VPH) grating.
These spectrographs represent a new paradigm in optical spectrometer design, and the team has developed a suite of STGS designs that will allow them to build a new generation of distortion and aberration-free spectrographs that are simple, small, and lightweight. The key objectives for this project are: 1) to develop curved grating manufacturing processes to match design and market goals, 2) to design and fabricate a prototype testbed HSI for design validation and high-throughput quality testing, and 3) to create finalized optical designs for STGSs in the F/2 to F/2.5 range.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the foundation's intellectual merit and broader impacts review criteria.
The market is projected to reach $35.8 billion by 2026, at an annual growth rate of 18.4%. End-users range from astronomy to agriculture, manufactures, and third-party integrators (e.g., drone companies). Current technologies are too costly or do not possess the size, weight, and power (SWAP) properties required for practical value delivery. Furthermore, in low light conditions or in applications that require aberration-free high-resolution images (e.g., defense-based imaging), current technologies on the market cannot meet customer requirements. This solution promises to solve these issues.
Agriculture and defense are the two leading market applications and represent the primary entry points for this technology. The intellectual merit of this project will enable a transformation in the spectroscopy and the hyperspectral imaging (HSI) market by enabling low-cost, superior image quality spectrographs. The product will be a novel spherical transmission grating spectrometer (STGS) for hyperspectral imaging.
Preliminary STGS designs, invented in a collaboration with astronomers at the University of North Carolina Chapel Hill and Southern African Large Telescope employ a combination of a spherical mirror and a spherically-curved transmission grating to deliver fully aberration-corrected spectral images with no field distortion. Challenges to their production are the design, fabrication, and testing of this spherical volume phase holographic (VPH) grating.
These spectrographs represent a new paradigm in optical spectrometer design, and the team has developed a suite of STGS designs that will allow them to build a new generation of distortion and aberration-free spectrographs that are simple, small, and lightweight. The key objectives for this project are: 1) to develop curved grating manufacturing processes to match design and market goals, 2) to design and fabricate a prototype testbed HSI for design validation and high-throughput quality testing, and 3) to create finalized optical designs for STGSs in the F/2 to F/2.5 range.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the foundation's intellectual merit and broader impacts review criteria.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF22551
Grant Program (CFDA)
Awarding Agency
Place of Performance
Chapel Hill,
North Carolina
27517-8022
United States
Geographic Scope
Single Zip Code
Related Opportunity
22-551
Analysis Notes
Amendment Since initial award the End Date has been extended from 06/30/24 to 06/30/25.
Syzygy Optics was awarded
Project Grant 2233096
worth $275,000
from in July 2023 with work to be completed primarily in Chapel Hill North Carolina United States.
The grant
has a duration of 2 years and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
STTR Phase I
Title
STTR Phase I:Curved Volume Phase Holographic Gratings: Efficient and High-Resolution Hyperspectral Imaging
Abstract
This Small Business Technology Transfer Phase I project will develop a completely new class of spectrometer, the spherical transmission grating spectrometer (STGS), which utilizes curved volume phase holographic (VPH) gratings coupled with a spherical mirror to deliver aberration-corrected spectral images over the full field of view. The market is projected to reach $35.8 billion by 2026, at an annual growth rate of 18.4%. End-users range from astronomy to agriculture, manufactures, and third-party integrators (e.g., drone companies). Current technologies are too costly or do not possess the size, weight, and power (SWAP) properties required for practical value delivery. Furthermore, in low light conditions or in applications that require aberration-free high-resolution images (e.g., defense-based imaging), current technologies on the market cannot meet customer requirements. This solution promises to solve these issues. Agriculture and defense are the two leading market applications and represent the primary entry points for this technology. _x000D_ _x000D_ The intellectual merit of this project will enable a transformation in the spectroscopy and the hyperspectral imaging (HSI) market by enabling low-cost, superior image quality spectrographs. The product will be a novel spherical transmission grating spectrometer (STGS) for hyperspectral imaging. Preliminary STGS designs, invented in a collaboration with astronomers at the University of North Carolina Chapel Hill and Southern African Large Telescope employ a combination of a spherical mirror and a spherically-curved transmission grating to deliver fully aberration-corrected spectral images with no field distortion. Challenges to their production are the design, fabrication, and testing of this spherical volume phase holographic (VPH) grating. These spectrographs represent a new paradigm in optical spectrometer design, and the team has developed a suite of STGS designs that will allow them to build a new generation of distortion and aberration free spectrographs that are simple, small, and lightweight. The key objectives for this project are: 1) to develop a curved grating manufacturing processes to match design and market goals, 2) to design and fabricate a prototype testbed HSI for design validation and high-throughput quality testing, and 3) to create finalized optical designs for STGSs in the F/2 to F/2.5 range._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
IH
Solicitation Number
NSF 22-551
Status
(Complete)
Last Modified 12/18/24
Period of Performance
7/15/23
Start Date
6/30/25
End Date
Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
Activity Timeline
Transaction History
Modifications to 2233096
Additional Detail
Award ID FAIN
2233096
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
EVVCNB5YZUS3
Awardee CAGE
None
Performance District
NC-09
Senators
Thom Tillis
Ted Budd
Ted Budd
Budget Funding
Federal Account | Budget Subfunction | Object Class | Total | Percentage |
---|---|---|---|---|
Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $275,000 | 100% |
Modified: 12/18/24