2233044
Project Grant
Overview
Grant Description
SBIR Phase I: Caged Urea as an Eco-Friendly Nitrogen Fertilizer - The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase I project is the reduction in greenhouse gas emissions and water contamination due to nitrogen fertilizers. The project will also increase agricultural productivity at lower nitrogen application rates using a novel concept of urea trapped in molecular cages.
Nitrogen fertilizers can be serious environmental pollutants. Available alternatives are either too expensive for general agricultural use or cause unwanted residue buildup and are, therefore, minimally used. Pollution from nitrogen fertilizers remains a serious concern globally.
This project's impact is directed at three targets: (A) Farmer income: The proposed nitrogen fertilizer may increase crop yields by 5-10%, improve farm profits, and improve the income of 10% of the US population; (B) US economy: The technology may boost the US economy by global export of this fertilizer; and (C) Environment and health: The solution may reduce greenhouse gas emissions and water pollution from nitrogen fertilizer.
The project is aimed at the development of a novel fertilizer compound, where urea is trapped within a biodegradable molecular cage. The molecular cage is designed to bind urea within its structure to reduce its solubility and reduce pollutant production. Nitrogen is released from this cage only when the cage is dissolved by root secretions (such as organic acids). This technology is an intelligent release mechanism where an insoluble nutrient is released only on demand by the plant. The cage itself is constructed of plant nutrients; therefore, when the plant dissolves the cage, it not only gets its nitrogen from urea but also consumes the cage because the cage is also food to the plant.
To have a commercially successful product, the team will optimize the performance of the caged urea to meet agronomic and environmental targets and farmer acceptability. These goals will be accomplished by modulating the cage-link bridges to improve the trapping of urea, reducing volatilization by controlling the microenvironment modifiers, controlling emissions during production, and improving the physical properties for ease-of-farmer use.
This project will help to develop caged-urea into an environmentally impactful, agronomically beneficial, marketable, consumer-friendly, and manufacturable commodity. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are not planned for this award.
Nitrogen fertilizers can be serious environmental pollutants. Available alternatives are either too expensive for general agricultural use or cause unwanted residue buildup and are, therefore, minimally used. Pollution from nitrogen fertilizers remains a serious concern globally.
This project's impact is directed at three targets: (A) Farmer income: The proposed nitrogen fertilizer may increase crop yields by 5-10%, improve farm profits, and improve the income of 10% of the US population; (B) US economy: The technology may boost the US economy by global export of this fertilizer; and (C) Environment and health: The solution may reduce greenhouse gas emissions and water pollution from nitrogen fertilizer.
The project is aimed at the development of a novel fertilizer compound, where urea is trapped within a biodegradable molecular cage. The molecular cage is designed to bind urea within its structure to reduce its solubility and reduce pollutant production. Nitrogen is released from this cage only when the cage is dissolved by root secretions (such as organic acids). This technology is an intelligent release mechanism where an insoluble nutrient is released only on demand by the plant. The cage itself is constructed of plant nutrients; therefore, when the plant dissolves the cage, it not only gets its nitrogen from urea but also consumes the cage because the cage is also food to the plant.
To have a commercially successful product, the team will optimize the performance of the caged urea to meet agronomic and environmental targets and farmer acceptability. These goals will be accomplished by modulating the cage-link bridges to improve the trapping of urea, reducing volatilization by controlling the microenvironment modifiers, controlling emissions during production, and improving the physical properties for ease-of-farmer use.
This project will help to develop caged-urea into an environmentally impactful, agronomically beneficial, marketable, consumer-friendly, and manufacturable commodity. This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria. - Subawards are not planned for this award.
Awardee
Funding Goals
THE GOAL OF THIS FUNDING OPPORTUNITY, "NSF SMALL BUSINESS INNOVATION RESEARCH (SBIR)/ SMALL BUSINESS TECHNOLOGY TRANSFER (STTR) PROGRAMS PHASE I", IS IDENTIFIED IN THE LINK: HTTPS://WWW.NSF.GOV/PUBLICATIONS/PUB_SUMM.JSP?ODS_KEY=NSF22551
Grant Program (CFDA)
Awarding / Funding Agency
Place of Performance
Los Altos,
California
94024-5568
United States
Geographic Scope
Single Zip Code
Related Opportunity
22-551
Agtec Innovations was awarded
Project Grant 2233044
worth $274,457
from National Science Foundation in September 2023 with work to be completed primarily in Los Altos California United States.
The grant
has a duration of 1 year and
was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.
SBIR Details
Research Type
SBIR Phase I
Title
SBIR Phase I:Caged Urea as an Eco-friendly Nitrogen Fertilizer
Abstract
The broader/commercial impact of this Small Business Innovation Research (SBIR) Phase I project is the reduction in greenhouse gas emissions and water contamination due to nitrogen fertilizers. The project will also increase agricultural productivity at lower nitrogen application rates using a novel concept of urea trapped in molecular cages. Nitrogen fertilizers can be serious environmental pollutants. Available alternatives are either too expensive for general agricultural use or cause unwanted residue buildup and are, therefore, minimally used. Pollution from nitrogen fertilizers remains a serious concern globally. This project's impact is directed at three targets: (a) Farmer income: the proposed nitrogen fertilizer may increase crop yields by 5-10%, improve farm profits, and improve the income of 10% of the US population; (b) US economy: the technology may boost the US economy by global export of this fertilizer; and (c) Environment and health: the solution may reduce greenhouse gas emissions and water pollution from nitrogen fertilizer._x000D_ _x000D_ The project is aimed at the development of a novel fertilizer compound, where urea is trapped within a biodegradable molecular cage. The molecular cage is designed to bind urea within its structure to reduce its solubility and reduce pollutant production. Nitrogen is released from this cage only when the cage is dissolved by root secretions (such as organic acids). This technology is an intelligent release mechanism where an insoluble nutrient is released only on demand by the plant. The cage itself is constructed of plant nutrients therefore, when the plant dissolves the cage, it not only gets its nitrogen from urea but also consumes the cage because the cage is also food to the plant. To have a commercially successful product, the team will optimize the performance of the caged urea to meet agronomic and environmental targets and farmer acceptability. These goals will be accomplished by modulating the cage-link bridges to improve the trapping of urea, reducing volatilization by controlling the microenvironment modifiers, controlling emissions during production, and improving the physical properties for ease-of-farmer use. This project will help to develop caged- urea into an environmentally impactful, agronomically beneficial, marketable, consumer friendly, and manufacturable commodity._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
ET
Solicitation Number
NSF 22-551
Status
(Complete)
Last Modified 9/5/23
Period of Performance
9/15/23
Start Date
8/31/24
End Date
Funding Split
$274.5K
Federal Obligation
$0.0
Non-Federal Obligation
$274.5K
Total Obligated
Activity Timeline
Additional Detail
Award ID FAIN
2233044
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
WCKUJMU4ZYC5
Awardee CAGE
9B3H5
Performance District
CA-16
Senators
Dianne Feinstein
Alejandro Padilla
Alejandro Padilla
Budget Funding
| Federal Account | Budget Subfunction | Object Class | Total | Percentage |
|---|---|---|---|---|
| Research and Related Activities, National Science Foundation (049-0100) | General science and basic research | Grants, subsidies, and contributions (41.0) | $274,457 | 100% |
Modified: 9/5/23