Search Prime Grants

2230484

Project Grant

Overview

Grant Description
SBIR Phase I: Pathogen Interception: A new method for finding and identifying genetic sequences - The broader impact of this Small Business Innovation Research (SBIR) Phase I project will be the ability to quickly and inexpensively determine the presence and genetic sequence of a wide variety of pathogenic organisms. Most importantly, this technology could be implemented without prior assumptions as to which organisms are expected.

Sequencing will be accomplished by direct electrical identification of the building blocks, the bases, of the genomic sequence. The potential societal impact of this technology is to provide a method to screen individuals quickly (under a minute) for the presence of infections. Screening at ports of entry and in appropriate community settings will minimize disease transmission and allow for the quick identification and treatment of any infected individuals at US borders.

In addition, beyond this immediate application, the technology may also enhance scientific understanding of normal genetic sequences in any organism. If its anticipated speed, high accuracy, and low cost are realized, this technology may find applications in human in vitro diagnostics and human genome sequencing.

The studies in this Phase I project will lead to a proof-of-concept demonstration for an automated, commercial instrument. The project seeks to determine the identity and order of the genetic building blocks, the nucleotide bases, comprising any genomic sequences present in a sample solution. This sequencing will be done by examining the ability of each base in the sequence to modify a tunneling current as it is passed by electrophoresis across two very closely spaced tunneling electrodes.

Tunneling is a well-known quantum mechanical effect, and it is quite sensitive to the electrical configuration of the object (here a given specific nucleotide base) present between its electrodes. Experiments with this technology to date have been unsuccessful because genetic sequences have not been able to be moved slowly enough across the tunneling electrodes for their bases to be distinguished.

The studies here will overcome this problem by modifications of the geometry and solution conditions of the electrophoresis and possibly with improved methods of tunneling current detection. The data obtained through the application of this technology is expected to enhance the current understanding of nucleotide base chemistry. The solution may permit the detection of nucleotide base modifications of potential biological and medical importance.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Awarding / Funding Agency
Place of Performance
Tucson, Arizona 85719-1439 United States
Geographic Scope
Single Zip Code
Related Opportunity
None
Goodman Consulting Group was awarded Project Grant 2230484 worth $275,000 from National Science Foundation in May 2023 with work to be completed primarily in Tucson Arizona United States. The grant has a duration of 1 year and was awarded through assistance program 47.084 NSF Technology, Innovation, and Partnerships.

SBIR Details

Research Type
SBIR Phase I
Title
SBIR Phase I:Pathogen Interception: A new method for finding and identifying genetic sequences
Abstract
The broader impact of this Small Business Innovation Research (SBIR) Phase I project will be the ability to quickly and inexpensively determine the presence and genetic sequence of a wide variety of pathogenic organisms. Most importantly, this technology could be implemented without prior assumptions as to which organisms are expected. Sequencing will be accomplished by direct electrical identification of the building blocks, the bases, of the genomic sequence. The potential societal impact of this technology is to provide a method to screen individuals quickly (under a minute) for the presence of infections. Screening at ports of entry and in appropriate community settings will minimize disease transmission and allow for the quick identification and treatment of any infected individuals at US borders. In addition, beyond this immediate application, the technology may also enhance scientific understanding of normal genetic sequences in any organism. If its anticipated speed, high accuracy, and low cost are realized, this technology may find applications in human in vitro diagnostics and human genome sequencing. The studies in this Phase I project will lead to a proof-of-concept demonstration for an automated, commercial instrument._x000D_ _x000D_ The project seeks to determine the identity and order of the genetic building blocks, the nucleotide bases, comprising any genomic sequences present in a sample solution. This sequencing will be done by examining the ability of each base in the sequence to modify a tunneling current as it is passed by electrophoresis across two very closely spaced tunneling electrodes. Tunneling is a well-known quantum mechanical effect, and it is quite sensitive to the electrical configuration of the object (here a given specific nucleotide base) present between its electrodes. Experiments with this technology to date have been unsuccessful because genetic sequences have not been able to be moved slowly enough across the tunneling electrodes for their bases to be distinguished. The studies here will overcome this problem by modifications of the geometry and solution conditions of the electrophoresis and possibly with improved methods of tunneling current detection. The data obtained through the application of this technology is expected to enhance the current understanding of nucleotide base chemistry. The solution may permit the detection of nucleotide base modifications of potential biological and medical importance._x000D_ _x000D_ This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Topic Code
BT
Solicitation Number
NSF 22-551

Status
(Ongoing)

Last Modified 5/4/23

Period of Performance
5/1/23
Start Date
4/30/24
End Date
81.0% Complete

Funding Split
$275.0K
Federal Obligation
$0.0
Non-Federal Obligation
$275.0K
Total Obligated
100.0% Federal Funding
0.0% Non-Federal Funding

Activity Timeline

Interactive chart of timeline of amendments to 2230484

Additional Detail

Award ID FAIN
2230484
SAI Number
None
Award ID URI
SAI EXEMPT
Awardee Classifications
Small Business
Awarding Office
491503 TRANSLATIONAL IMPACTS
Funding Office
491503 TRANSLATIONAL IMPACTS
Awardee UEI
FCP8BWKMLF73
Awardee CAGE
None
Performance District
06
Senators
Kyrsten Sinema
Mark Kelly
Representative
Juan Ciscomani

Budget Funding

Federal Account Budget Subfunction Object Class Total Percentage
Research and Related Activities, National Science Foundation (049-0100) General science and basic research Grants, subsidies, and contributions (41.0) $275,000 100%
Modified: 5/4/23